Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-24T05:03:59.429Z Has data issue: false hasContentIssue false

Ferrian Saponite in a Gabbro Saprolite at Mont MéGantic, Quebec

Published online by Cambridge University Press:  02 April 2024

H. Kodama
Affiliation:
Land Resource Research Centre, Agriculture Canada, Ottawa, Ontario K1A 0C6, Canada
C. R. De Kimpe
Affiliation:
Land Resource Research Centre, Agriculture Canada, Ottawa, Ontario K1A 0C6, Canada
J. Dejou
Affiliation:
INRA, Station d'Agronomie, 12 Avenue de l'Agriculture, 63039 Clermont Ferrand Cedex, France

Abstract

Gabbroic saprolite at Mont Mégantic, Quebec, was studied in detail mineralogically to gain a better understanding of the origin of ferruginous smectite reported previously from these rocks. The parent rock is a ferrogabbro composed of plagioclase, augite, calc-alkalic amphiboles, biotite, olivine, magnetite, ilmenite, and apatite. Extensive weathering has decomposed most of the mafic minerals and magnetite to goethite, lepidocrocite, and iron-rich clay minerals, which occur in numerous microcracks distributed irregularly in the outer shells of boulders and in cracks and fissures in the bedrock. Some of the felsic minerals have altered to kaolinite. The secondary minerals and the more resistant primary minerals, such as plagioclase, ilmenite, and apatite, have subsequently moved to the lower part of the saprolite. The major ferruginous clay minerals present are smectite and vermiculite, which are compositionally similar, except that the smectite is slightly richer in SiO2 and MgO and poorer in Fe2O3 than the vermiculite.

To establish a structural formula for the ferruginous smectite, the oxidation state of Fe in a sample treated with dithionite-citrate-bicarbonate was examined by Mössbauer spectroscopy. All structural iron was found to be ferric. The calculated structural formula of a Na-saturated sample is:

$$N{a_{0.61}}\left( {M{g_{1.39}} + Fe_{0.85}^{3 + }A{l_{0.17}}M{n_{0.03}}} \right)\left( {S{i_{3.49}}A{l_{0.51}}} \right){O_{10}}{\left( {OH} \right)_2},$$
which has a total octahedral population of 2.44. Octahedral (Mg + Mn) exceeds octahedral (Fe3+ + Al). The 060 reflection at 1.527 Å is closer to the 1.530-Å value typical of saponite than to the 1.518-Å value typical of nontronite. The infrared spectra of the ferruginous smectite is also similar to that of saponite. Thus, the mineral is best described as a ferrian saponite. Ferroan saponite originally formed, and due to subsequent oxidation, some Fe3+ was expelled from the octahedral sheets, giving rise to a ferrian saponite containing octahedral vacancies. The expelled iron presumably formed the iron oxyhydroxides that coexist with the saponite.

Type
Research Article
Copyright
Copyright © 1988, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cardile, C. M. and Johnston, J. H., 1985 Structural studies of nontronites with different iron contents by 57Fe Mössbauer spectroscopy Clays & Clay Minerals 33 295300.CrossRefGoogle Scholar
Clark, S. P. Jr., 1966 Composition of rocks: in Handbook of Physical Constants Geol. Soc. Amer. Memoir 97 4.Google Scholar
Clément, P. and De Kimpe, C. R., 1977 Geomorphological conditions of gabbro weathering at Mount Mégantic, Quebec Can. J. Earth Sci. 14 22622273.CrossRefGoogle Scholar
Dejou, J., Clément, P. and De Kimpe, C. R., 1982 Importance du site dans la genèse des minéraux secondaires issus des altérations superficielles. Exemple des granites et gabbros du Mont-Mégantic, Québec, Canada Catena 9 181198.CrossRefGoogle Scholar
De Kimpe, C. R., Dejou, J. and Chevalier, Y., 1987 Evolution géochimique superficielle des pyroxénites ignées du Mont Saint-Bruno, Quebec Can. J. Earth Sci. 24 760770.CrossRefGoogle Scholar
Delvigne, J., Bisdom, E. B. A. Sleeman, J. and Stoops, G., 1979 Olivines, their pseudomorphs and secondary products Pédologie 29 247309.Google Scholar
Eby, N., 1984 Geochronology of the Monteregian Hills alkaline igneous provenance, Quebec Geology 12 468470.2.0.CO;2>CrossRefGoogle Scholar
Farmer, V. C. and Farmer, V. C., 1974 The layer silicates The Infrared Spectra of Minerals London Mineralogical Society.CrossRefGoogle Scholar
Farmer, V. C., Russell, J. D., MacHardy, W. J., Newman, A. C. D. Ahlrichs, J. L. and Rimsaite, J. Y. H., 1971 Evidence for loss of protons and octahedral iron from oxidized biotites and vermiculites Mineral.Mag. 38 121137.CrossRefGoogle Scholar
Kodama, H. (1985) Infrared spectra of minerals: Reference guide to identification and characterization of minerals for the study of soils: Res. Br. Agriculture Canada Tech Bull. 1985–1E, 197 pp.Google Scholar
Kodama, H. and De Kimpe, C. R., 1983 Ferruginous swelling clay minerals in a gabbro saprolite from Mount Mégantic, Quebec Can. J. Soil Sci. 63 143148.CrossRefGoogle Scholar
Kohyama, N., Shimoda, S. and Sudo, T., 1973 Iron-rich saponite (ferrous and ferric forms) Clays & Clay Minerals 21 229237.CrossRefGoogle Scholar
Mehra, O. P., Jackson, M. L. and Swineford, A., 1960 Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate Clays & Clay Minerals, Proc. 7th Natl. Conf., Washington, D.C, 1958 New York Pergamon Press 317327.Google Scholar
Miyamoto, N., 1957 Iron-rich saponite from Mazé, Niigata Prefecture, Japan Mineral. J. 2 193195.CrossRefGoogle Scholar
Moenke, H., 1966 Mineralspektren. II. Phyllosilikat Berlin (Non-tronite): Akademie-Verlag.Google Scholar
Norrish, K. and Taylor, R. M., 1961 The isomorphous replacement of iron by aluminium in soil goethites J. Soil Sci. 12 294306.CrossRefGoogle Scholar
Oinuma, K. and Kayashi, H., 1968 Infrared spectra of clay minerals J. Toko Univ. General Educ. (Nat. Sci.) 9 5798.Google Scholar
Reichen, L. E. and Fahey, J. J. (1962) An improved method for the determination of FeO in rocks and minerals including garnet: U.S. Geol. Surv. Bull. 1144–B, 5 pp.Google Scholar
Reid, A. M., 1976 Rapport sur la géologie du Mont Mégantic Minist. Rich. Nat. Québec .Google Scholar
Schwab, R. B. and Küstner, D., 1977 Präzisionsgitterkonstantenbestimmung zur Festlegung röntgenorgraphischer Bestimmungskurven für synthetische Olivine der Mischkristallreihe Forsterit-Fayalit N. Jahrb. Mineral. Mh. 205215.Google Scholar
Schwertmann, U., Taylor, R. M., Dixon, J. B. and Weed, S. B., 1977 Iron oxides Minerals in Soil Environments Wisconsin Soil Science Society of America, Madison 145180.Google Scholar
Sherman, G. D., Ikawa, H., Uehara, G. and Okazaki, E., 1962 Types of occurrence of nontronite and nontronite-like minerals in soils Pacific Science 16 5762.Google Scholar
Smith, J. V. and Gay, P., 1958 The powder patterns and lattice parameters of plagioclase feldspars II Mineral. Mag. 31 744762.Google Scholar
Sudo, T., 1954 Iron-rich saponite found from Tertiary iron sand beds in Japan J. Geol. Soc. Japan 59 1827.CrossRefGoogle Scholar
Sudo, T. and Ota, S., 1952 An iron-rich variety of mont-morillonite found in Oya-ishi J. Geol. Soc. Japan 58 487491.CrossRefGoogle Scholar
Weaver, C. E. and Pollard, L. D., 1973 The Chemistry of Clay Minerals Amsterdam Elsevier.Google Scholar