Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-23T08:07:49.925Z Has data issue: false hasContentIssue false

Oligocene clay mineralogy of the linxia basin: evidence of paleoclimatic evolution subsequent to the initial-stage uplift of the Tibetan Plateau

Published online by Cambridge University Press:  01 January 2024

Hanlie Hong*
Affiliation:
Faculty of Earth Sciences, China University of Geosciences, Wuhan, Hubei, 430074, PR China
Zhaohui Li
Affiliation:
Geosciences Department, University of Wisconsin — Parkside, Kenosha, WI 53141-2000, USA
Huijuan Xue
Affiliation:
Faculty of Earth Sciences, China University of Geosciences, Wuhan, Hubei, 430074, PR China
Yunhai Zhu
Affiliation:
Faculty of Earth Sciences, China University of Geosciences, Wuhan, Hubei, 430074, PR China
Kexin Zhang
Affiliation:
Faculty of Earth Sciences, China University of Geosciences, Wuhan, Hubei, 430074, PR China
Shuyuan Xiang
Affiliation:
Faculty of Earth Sciences, China University of Geosciences, Wuhan, Hubei, 430074, PR China
*
*E-mail address of corresponding author: honghl8311@yahoo.com.cn

Abstract

The clay mineral content of the Oligocene sediments in the Linxia Basin has been investigated using X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy. The clay mineral assemblages are mainly mixed-layer illite-smectite (I-S), illite, kaolinite and minor palygorskite in the early-Middle Oligocene deposits, mixed-layer I-S, illite and kaolinite in the Middle Oligocene deposits, mainly illite and chlorite (usually >50–70 vol.%), mixed-layer I-S, and trace to minor palygorskite in the late Oligocene sediments, respectively. The mineral assemblage indicates a warm and seasonally humid climate in the Middle Oligocene, with an episode of warm and dry conditions in the early stage of the Middle Oligocene, and a trend of temperature decrease and more arid conditions in the late Oligocene. Climate evolution in the Oligocene corresponds with the significant elevation change in central Tibet since late Oligocene, and therefore, suggests that tectonic-forced cooling of climate took place in Linxia in the northeast margin of the Tibetan Plateau. The ubiquitous mixed-layer I-S and carbonates throughout the Oligocene sediments reflect relatively small fluctuations in climate conditions during the epoch. The changes in clay mineral components and feldspars in the late Oligocene suggest a variation in the source of clastic materials, which probably reflects an increase in erosion of soils and poorly weathered parent rock in more elevated or high-relief source areas during this period of tectonic uplift.

Type
Research Article
Copyright
Copyright © 2007, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adatte, T. and Keller, G., (1998) Increased volcanism, sea-level and climatic fluctuations through the K/T boundary: mineralogical and geochemical evidences Abstract, International Seminar on Recent Advances in the Study of Cretaceous Sections Chennai, India Oil and Natural Gas Corporation Limited, Regional Geoscience Laboratory 2.Google Scholar
Biscaye, P.E., (1965) Mineralogy and sedimentation of recent deep sea clay in the Atlantic Ocean and adjacent seas and oceans Geological Society of America Bulletin 76 803832 10.1130/0016-7606(1965)76[803:MASORD]2.0.CO;2.CrossRefGoogle Scholar
Chamley, H., (1989) Clay Sedimentology Heidelberg, Germany Springer-Verlag 10.1007/978-3-642-85916-8 623 pp.CrossRefGoogle Scholar
Chamley, H. Robert, C. and Muller, D.W., (1993) The clay mineralogical record of the last 10 million years off northeastern Australia Proceedings of the Ocean Drilling Program 133 461470.Google Scholar
Chung, S. Lo, C. Lee, T. Zhang, Y. Xie, Y. Li, X. Wang, K. and Wang, P., (1998) Diachronous uplift of the Tibetan plateau starting 40 Myr ago Nature 394 769773 10.1038/29511.CrossRefGoogle Scholar
Cowgill, E. Yin, A. Harrison, T.M. and Wang, X.F., (2003) Reconstruction of the Altyn Tagh fault based on U-Pb geochronology: Role of back thrusts, mantle sutures, and heterogeneous crustal strength in forming the Tibetan Plateau Journal Geophysical Research 108 2346 10.1029/2002JB002080.CrossRefGoogle Scholar
Curtis, C.D., (1990) Aspects of climatic influence on the clay mineralogy and geochemistry of soils, palaeosols and clastic sedimentary rocks Journal of Geological Society of London 147 351357 10.1144/gsjgs.147.2.0351.CrossRefGoogle Scholar
DeCelles, P.G. Quade, J. Kapp, P. Fan, M. Dettman, D.L. and Ding, L., (2007) High and dry in central Tibet during the Late Oligocene Earth and Planetary Science Letters 253 389401 10.1016/j.epsl.2006.11.001.CrossRefGoogle Scholar
Dettman, D.L. Fang, X.M. Garzione, C.N. and Li, J.J., (2003) Uplift-driven climate change at 12 Ma: a long δ18O record from the NE margin of the Tibetan plateau Earth and Planetary Science Letters 214 267277 10.1016/S0012-821X(03)00383-2.CrossRefGoogle Scholar
Dupont-Nivet, G. Krijgsman, W. Langereis, C.G. Abels, H.A. Dai, S. and Fang, X., (2007) Tibetan plateau aridification linked to global cooling at the Eocene—Oligocene transition Nature 445 635638 10.1038/nature05516.CrossRefGoogle ScholarPubMed
Fan, M.J. and Song, C.H., (2003) A sedimentary environment analysis and the tectonic uplift of Linxia Basin in the northeast margin of Tibetan Plateau Journal of Lanzhou University (Natural Sciences) 39 8489 (in Chinese with English abstract).Google Scholar
Fang, X.M. Li, J.J. Zhu, J.J. Chen, H.L. and Cao, J.X., (1997) Division and age dating of the Cenozoic strata of the Linxia Basin in Gansu, China Chinese Science Bulletin 42 14571471 (in Chinese with English abstract).Google Scholar
Fang, X.M. Garzione, C. Van der Voo, R. Li, J.J. and Fan, M.J., (2003) Flexural subsidence by 29 Ma on the NE edge of Tibet from the magnetostratigraphy of Linxia Basin, China Earth and Planetary Science Letters 210 545560 10.1016/S0012-821X(03)00142-0.CrossRefGoogle Scholar
Garzione, C.N. Ikari, M.J. and Basu, A.R., (2005) Source of Oligocene to Pliocene sedimentary rocks in the Linxia Basin in northeastern Tibet from Nd isotopes: Implications for tectonic forcing of climate Geological Society of America Bulletin 117 11561166 10.1130/B25743.1.CrossRefGoogle Scholar
Gaucher, G., (1981) Les facteurs de la pedogenese Dison, Belgium G. Lelotte 730 pp.Google Scholar
Ghandour, I.M. Masuda, H. and Maejima, W., (2003) Mineralogical and chemical characteristics of Bajocian-Bathonian shales, G. Al-Maghara, North Sinai, Egypt: Climatic and environmental significance Geochemical Journal 37 87108 10.2343/geochemj.37.87.CrossRefGoogle Scholar
George, A.D. Marshallsea, S.J. Wyrwoll, K.H. Chen, J. and Lu, Y., (2001) Miocene cooling in the northern Qilian Shan, northeastern margin of the Tibetan Plateau, revealed by apatite fission-track and vitrinite-reflectance analysis Geology 29 939942 10.1130/0091-7613(2001)029<0939:MCITNQ>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Guo, Z.T. Ruddiman, W.F. Hao, Q.Z. Wu, H.B. Qiao, Y.S. Zhu, R.X. Peng, S.Z. Wei, J.J. Yuan, B.Y. and Liu, T.S., (2002) Onset of Asian desertification 22 Myr ago inferred from loess deposits in China Nature 416 159163 10.1038/416159a.CrossRefGoogle ScholarPubMed
Hallam, A. Grose, J.A. and Ruffell, A.H., (1991) Paleoclimatic significance of changes in clay mineralogy across the Jurassic-Cretaceous boundary in England and France Palaeogeography, Palaeoclimateology, Palaeoecology 81 173187 10.1016/0031-0182(91)90146-I.CrossRefGoogle Scholar
Hardy, R. Tucker, M. and Tucker, M., (1988) X-ray powder diffraction of sediments Techniques in Sedimentology Cambridge, UK Blackwell Science 191228.Google Scholar
Hower, J. Eslinger, E.V. Hower, M.E. and Perry, E.A., (1976) Mechanism of burial metamorphism of argillaceous sediment: 1. Mineralogical and chemical evidence Geological Society of America Bulletin 87 725737 10.1130/0016-7606(1976)87<725:MOBMOA>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Hurst, A., (1985) The implications of clay mineralogy for paleoclimate and provenance during the Jurassic in NE Scotland Scottish Journal of Geology 21 143160 10.1144/sjg21020143.CrossRefGoogle Scholar
Jackson, M.L., (1978) Soil Chemical Analyses Madison Published by the Author, University of Wisconsin.Google Scholar
Jolivet, M. Brunel, M. Seward, D. Xu, Z. Yang, J. Roger, F. Tapponnier, P. Malavieille, J. Arnaud, N. and Wu, C., (2001) Mesozoic and Cenozoic tectonics of the northern edge of the Tibetan Plateau: Fission-track constraints Tectonophysics 343 111134 10.1016/S0040-1951(01)00196-2.CrossRefGoogle Scholar
Jones, B.F. and Galán, E., (1988) Sepiolite and palygorskite Hydrous Phyllosilicates (exclusive of micas) 19 631674 10.1515/9781501508998-021.CrossRefGoogle Scholar
Khademi, H. and Mermut, A.R., (1999) Submicroscopy and stable isotope geochemistry of carbonates and associated palygorskite in Iranian Aridisols European Journal of Soil Science 50 207216 10.1046/j.1365-2389.1999.t01-1-00237.x.CrossRefGoogle Scholar
Li, J.J. Feng, Z.D. and Tang, L.Y., (1988) Late Quaternary monsoon patterns on the loess plateau of China Earth Surface Processes and Landforms 13 125135 10.1002/esp.3290130204.Google Scholar
Lindgreen, H. and Surlyk, F., (2000) Upper Permian-Lower Cretaceous clay mineralogy of East Greenland: provenance, paleoclimate and volcanicity Clay Minerals 35 791806 10.1180/000985500547241.CrossRefGoogle Scholar
Lu, Q., Lei, X.R. and Liu, H.F. (1990) Genesis types and crystalchemical classification of irregular illite/smectite interstratified clay minerals. The 15thInternational Mineralogical Association Meeting, Beijing, abstract.Google Scholar
Lu, Q. Lei, X.R. and Liu, H.F., (1993) Study of the stacking sequences of a kind of irregular mixed-layer illite-smectite (I/S) clay mineral Acta Geologica Sinica 67 123130 (in Chinese with English abstract).Google Scholar
Madhavaraju, J. Ramasamy, S. Ruffell, A. and Mohan, S.P., (2002) Clay mineralogy of the late Cretaceous and early Tertiary successions of the Cauvery Basin (southeastern India): implications for sediment source and palaeoclimates at the K/T boundary Cretaceous Research 23 153163 10.1006/cres.2002.0310.CrossRefGoogle Scholar
Miller, K.G. Fairbanks, R.G. and Mountain, G.S., (1987) Tertiary oxygen isotope synthesis, sea level history, and continental margin erosion Paleoceanography 2 119 10.1029/PA002i001p00001.CrossRefGoogle Scholar
Millot, G., (1970) Geology of Clays Berlin Springer-Verlag 10.1007/978-3-662-41609-9 499 pp.CrossRefGoogle Scholar
Mock, C. Arnaud, N.O. and Cantagrel, J.M., (1999) An early unroofing in northeastern Tibet? Constraints from 40Ar/39Ar thermochronology on granitoids from the eastern Kunlun range (Qianghai, NW China) Earth and Planetary Science Letters 171 107122 10.1016/S0012-821X(99)00133-8.CrossRefGoogle Scholar
Molnar, P., (2005) Mio-Pliocene growth of the Tibetan plateau and evolution of east Asian climate Palaeontologia Electronica 8 2A 23 pp.Google Scholar
Moore, D.M. and Reynolds, R.C., (1989) X-ray Diffraction and the Identification and Analysis of Clay Minerals New York Oxford University Press 332 pp.Google Scholar
Nesbitt, H.W. and Young, G.M., (1982) Early Proterozoic climates and plate motions inferred from major elements chemistry of lutites Nature 299 715717 10.1038/299715a0.CrossRefGoogle Scholar
Perry, E.A. and Hower, J., (1970) Burial diagenesis in Gulf Coast pelitic sediments Clays and Clay Minerals 18 165177 10.1346/CCMN.1970.0180306.CrossRefGoogle Scholar
Pearson, M.J. and Small, J.S., (1988) Illite-smectite diagenesis and palaeotemperatures in northern North Sea Quaternary to Mesozoic shale sequences Clay Minerals 23 109132 10.1180/claymin.1988.023.2.01.CrossRefGoogle Scholar
Raymo, M.E. and Ruddiman, W.F., (1992) Tectonic forcing of late Cenozoic climate Nature 359 117122 10.1038/359117a0.CrossRefGoogle Scholar
Reynolds, R.C. and Hower, J., (1970) The nature of interlayering in mixed-layer illite-montmorillonite Clays and Clay Minerals 18 2536 10.1346/CCMN.1970.0180104.CrossRefGoogle Scholar
Riedmüller, G., (1978) Neoformations and transformations of clay minerals in tectonic shear zones Tschermaks Mineralogische und Petrographische Mitteilungen 25 219242 10.1007/BF01081421.CrossRefGoogle Scholar
Robert, C. and Chamley, H., (1991) Development of early Eocene warm climates, as inferred from clay mineral variations in oceanic sediments Global and Planetary Change 89 315331 10.1016/0921-8181(91)90114-C.CrossRefGoogle Scholar
Robert, C. and Kennett, J.P., (1994) Antarctic subtropical humid episode at the Paleocene-Eocene boundary: Clay-mineral evidence Geology 22 211214 10.1130/0091-7613(1994)022<0211:ASHEAT>2.3.CO;2.2.3.CO;2>CrossRefGoogle Scholar
Rodas, M. Luque, F.J. Mas, R. and Garzon, M.G., (1994) Calcretes, palycretes and silcretes in the Paleogene detrital sediments of the Duero and Tajo basins, central Spain Clay Minerals 29 273285 10.1180/claymin.1994.029.2.13.CrossRefGoogle Scholar
Sancho, C. Melendez, A. Signes, M. and Bastida, J., (1992) Chemical and mineralogical characteristics of Pleistocene caliche deposits from the central Ebro Basin, NE Spain Clay Minerals 27 293308 10.1180/claymin.1992.027.3.03.CrossRefGoogle Scholar
Shi, Y. Li, J. and Li, B., (1998) Late Cenozoic Uplift and Environmental Change of Qinghai-Tibet Plateau Guangzhou, China Guangdong Science & Technology Press 463 pp (in Chinese).Google Scholar
Singer, A., (1984) The paleoclimatic interpretation of clay minerals in sediments — areview Earth Science Reviews 21 251293 10.1016/0012-8252(84)90055-2.CrossRefGoogle Scholar
Singer, A. and Galán, E. (1984)(editors) () Palygorskite-Sepiolite, Occurrences, Genesis, Uses. Developments in Sedimentology, 37, Elsevier, Amsterdam, 340 pp.Google Scholar
Sobel, E.R. and Dumitru, T.A., (1997) Thrusting and exhumation around the margins of the western Tarim basin during the India-Asia collision Journal Geophysical Research 102 50435063 10.1029/96JB03267.CrossRefGoogle Scholar
Sun, X.J. and Wang, P.X., (2005) How old is the Asian monsoon system? Palaeobotanical records from China Palaeogeography, Palaeoclimatology, Palaeoecology 222 181222 10.1016/j.palaeo.2005.03.005.CrossRefGoogle Scholar
Tapponnier, P. Xu, Z. Roger, F. Meyer, B. Arnaud, N. Wittlinger, G. and Yang, J., (2001) Oblique stepwise rise and growth of the Tibet Plateau Science 294 16711677 10.1126/science.105978.CrossRefGoogle ScholarPubMed
Taylor, S.R. and McLenman, S.M., (1985) The Continental Crust: Its Composition and Evolution Cambridge, Massachusetts, USA Blackwell Science 312 pp.Google Scholar
Verrecchia, E.P. and LeCoustumer, M.N., (1996) Occurrence and genesis of palygorskite and associated clay minerals in a Pleistocene calcrete complex, Sde Boqer, Negev Desert, Israel Clay Minerals 31 183202 10.1180/claymin.1996.031.2.04.CrossRefGoogle Scholar
Wang, P. Jian, Z. Zhao, Q. Li, Q. Wang, R. Liu, Z. Wu, G. Shao, L. Wang, J. Huang, B. Fang, D. Tian, J. Li, J. Li, X. Wei, G. Sun, X. Luo, Y. Su, X. Mao, S. and Chen, M., (2003) Evolution of the South China Sea and monsoon history revealed in deep sea records Chinese Science Bulletin 48 25492561 10.1360/03wd0156.CrossRefGoogle Scholar
Weaver, C.E. and Beck, K.C. (1977) Miocene of the S.E. United States: a Model for Chemical Sedimentation in a Peri-marine Environment. Developments in Sedimentology, 22, Elsevier, Amsterdam, 234 pp.Google Scholar
Weaver, C.E., (1989) Clays, Muds, and Shales Amsterdam Elsevier 819 pp.Google Scholar
Young, G.M. and Nesbitt, H.W., (1998) Processes controlling the distribution of Ti and Al in weathering profiles, siliciclastic sediments and sedimentary rocks Journal of Sedimentary Research 68 448455 10.2110/jsr.68.448.CrossRefGoogle Scholar