日本機械学会論文集
Online ISSN : 2187-9761
ISSN-L : 2187-9761
機械力学,計測,自動制御,ロボティクス,メカトロニクス
ミスチューンを有する翼・ディスク系の振動応答に関する研究(ミスチューン特性に及ぼす翼構造の影響)
金子 康智村上 朝吉渡邉 敏生鷲尾 宰司
著者情報
ジャーナル フリー

2019 年 85 巻 876 号 p. 18-00398

詳細
抄録

Although bladed disks are nominally designed to be cyclically symmetric (tuned system), the vibration characteristics of all the blades on a disk are slightly different due to the manufacturing tolerance, deviations in the material properties, and wear during operation. These small variations break the cyclic symmetry. Bladed disks with small variations are referred to as a mistuned system. In the forced response of a mistuned bladed disk, the responses of all the blades become different, and the response of a certain blade may become extremely large due to splitting of the duplicated eigenvalues and distortion of the vibration modes. On the other hand, mistuning suppresses blade flutter, because the complete traveling wave mode is not formed in a disk. Although such mistuning phenomena of bladed disks have been studied since 1980s, almost all studies focused on the amplification factor of the displacement response, and few studies researched the amplification factor of the vibratory stress response. In the previous paper, authors studied the amplification factor expressed by the vibratory stress for bladed disks with the continuous ring-blade structure, using the reduced order model SNM (Subset of Nominal Modes), and pointed out that the amplification factor of the displacement and the vibratory stress is different. This work is a follow-up study on the previous paper. The amplification factor of the vibratory stress for bladed disks with the free-standing blade structure is studied, using the reduced order model SNM. Comparing the mistuning phenomena of bladed disks of the continuous ring-blade structure and the free-standing blade structure, the reason why the amplification factor of the displacement and the vibratory stress is different is clarified.

著者関連情報
© 2019 一般社団法人日本機械学会
前の記事 次の記事
feedback
Top