DOI QR코드

DOI QR Code

Synthesis of Metal Doped ZnO Nanoclusters by Microwave Assisted Polyol Process

마이크로웨이브 폴리올 공정에서 금속 도핑 산화아연 나노클러스터의 합성

  • Kwon, Oh-San (Department of Engineering Chemistry, Chungbuk National University) ;
  • Kang, Kuk-Hyoun (Department of Engineering Chemistry, Chungbuk National University) ;
  • Lee, Dong-Kyu (Department of Engineering Chemistry, Chungbuk National University)
  • 권오산 (충북대학교 공과대학 공업화학과) ;
  • 강국현 (충북대학교 공과대학 공업화학과) ;
  • 이동규 (충북대학교 공과대학 공업화학과)
  • Received : 2014.09.15
  • Accepted : 2014.09.19
  • Published : 2014.09.30

Abstract

ZnO has attracted much attention such as photocatalysts, sensors, piezoelectricity and etc. At present, an economical and rapid synthesis route based on the efficient microwave polyol process is used to synthesized metal-doped ZnO nanoclusters. Diethylene glycol has a property of high polarizability, and is an excellent microwave absorbing agent, thus leading to a high heating rate and a significantly shorter reaction time. In this study, metal-doped ZnO nanoclusters are obtained with different seed volumes, when zinc acetate dihydrate is used as a precursor, and metal acetate hydrate is used as a doped-metal and diethylene glycol is used as a solvent. The obtained metal-doped ZnO nanoclusters were characterized by FE-SEM, XRD, Raman and PSA.

금속이 도핑 된 산화아연 나노클러스터를 합성하기 위해 마이크로웨이브를 이용한 폴리올 공정은 빠르고 경제적인 합성 방법이다. 디에틸렌글리콜은 높은 분극률과 마이크로파의 흡수 능력이 뛰어나며, 높은 온도상승 비율과 반응시간을 짧게 해준다. 본 연구에서는 금속이 도핑 된 산화아연 나노클러스터를 합성하기 위해서 첨가되는 seed의 부피비를 다르게 하여 얻었으며, 전구체로는 아세트산 아연 2수화물, 도핑 금속은 아세트산 금속 염을 그리고 용매로서 디에틸렌글리콜을 사용하였다. 금속이 도핑된 산화아연 클러스터는 FE-SEM, XRD, Raman, PSA로 특성을 확인하였다.

Keywords

References

  1. Y. H. Kim, S. G. Lee, E. J. Jung, D. W. Lee, H. B. Pyo, K. H. Kang, D. K. Lee, "Preparation and Characteristics of Multilayer Lamellar Vesicle Using phosphate Ester Surfactant", J. of Korean Oil Chemists' Soc., 30, 280-289 (2013). https://doi.org/10.12925/jkocs.2013.30.2.280
  2. K. H. Kang, D. K. Lee, "Synthesis and Characteristics of Magnesium Hydroxide using Microwave", Korean J. Met. Mater., 51, 077-082 (2013).
  3. S. B. Choi, D. K. Lee, H. U. Yu, "Synthesis of MgO Granule and Its Precursors via Common Ion Effect" J. Nanosci. Nanotechnol. 12, 5778-5782 (2012). https://doi.org/10.1166/jnn.2012.6297
  4. K. H. Kang, D. K. Lee, H. Rus, S. H. Ahn, H. U. Yu, "Shape Control of Magnesium Oxysulfate Granules Using an Ethanolamine Chelate", J. Nanosci. Nanotechno., 14, 8777-8782 (2014). https://doi.org/10.1166/jnn.2014.9959
  5. H. M. Xiong, D. G. Shchukin, H. Mhwald, Y. Xu, Y.Y. Xia, "Sonochemical synthesis of highly luminescent zinc oxide nanoparticles doped with magnesium(II)", Angew. Chem. Int. Ed. 48, 2727-2731 (2009). https://doi.org/10.1002/anie.200805590
  6. H. Deng, X. Li, Q. Peng, X. Wang, J. Chen, Y. Li, "Monodisperse Magnetic Single-Crystal Ferrite Microspheres", Angew. Chem. Int. Ed., 44, 2782-2785 (2005). https://doi.org/10.1002/anie.200462551
  7. C. Feldmann, H. O. Jungk, "Polyol-Mediated Preparation of Nanoscale Oxide Particles We thank Jacqueline Merikhi and Gerd Much for carrying out the scanning electron microscopy (SEM) and the atomic force microscopy (AFM) investigations, respectively", Angew. Chem. Int. Ed., 40, 359-362 (2001). https://doi.org/10.1002/1521-3773(20010119)40:2<359::AID-ANIE359>3.0.CO;2-B
  8. C. Li, Y. Zhao, L. Wang, G. Li, Z. Shi, S. Feng, "Polyol-Mediated Synthesis of Highly Water-Soluble ZnO Colloidal Nanocrystal Clusters", Eur. J. Inorg. Chem., 2010, 217-220 (2010). https://doi.org/10.1002/ejic.200900833
  9. I. Bilecka, I. Djerdj, M. Niederberger, "One-minute synthesis of crystalline binary and ternary metal oxide nanoparticles", Chem. Commum., 2008, 886-888 (2008).
  10. J. A. Gerbec, D. Magana, A. Washington, G. F. Strouse, "Microwave-Enhanced Reaction Rates for Nanoparticle Synthesis", J. Am. Chem. Soc., 127, 15791-15800 (2005). https://doi.org/10.1021/ja052463g
  11. Y. J. Zhu, W. W. Wang, R. J. Qi, X. L. Hu, "Synthesis of PbCrO4 and Pb2CrO5 Rods via a Microwave-Assisted Ionic Liquid Method", Angew. Chem. Int. Ed., 43, 1410-1414 (2004). https://doi.org/10.1002/anie.200353101
  12. S. Makhluf, R. Dror, Y. Nitzan, Y. Abramovich, R. Jelinek, A. Gedanken, "Microwave-Assisted Synthesis of Nanocrystalline MgO and Its Use as a Bacteriocide", Adv. Funct. Mater., 15, 1708-1715 (2005). https://doi.org/10.1002/adfm.200500029
  13. M. Tsuji, M. Hashimoto, Y. Nishizawa, M. Kubokawa, "Microwave-Assisted Synthesis of Metallic Nanostructures in Solution", Chem. Eur. J., 11, 440-452 (2005). https://doi.org/10.1002/chem.200400417
  14. A. K. Phuruangrat, T. P. Thongtem, S. C. Thongtem, "Controlling morphologies and growth mechanism of hexagonal prisms with planar and pyramid tips of ZnO microflowers by microwave radiation" Ceramics Internal., 40, 9069-9076 (2014). https://doi.org/10.1016/j.ceramint.2014.01.120
  15. K. A. salman, K. Omar, Z. Hassan, "Effective conversion efficiency enhancement of solar cell using ZnO/PS antireflection coating layers" solar energy, 86, 541-547 (2012). https://doi.org/10.1016/j.solener.2011.10.030
  16. C. Feldmann, "Preparation of Nanoscale Pigment Particles", Adv. Mater., 13, 1301-1303 (2001). https://doi.org/10.1002/1521-4095(200109)13:17<1301::AID-ADMA1301>3.0.CO;2-6
  17. C. Feldmann, "Polyol-Mediated Synthesis of Nanoscale Functional Materials", Adv. Funct. Mater., 13, 101-107 (2003). https://doi.org/10.1002/adfm.200390014
  18. M. A. Herrero, J. M. Kremsner, C. O. Kappe, Nonthermal Microwave Effects Revisited: On the Importance of Internal Temperature Monitoring and Agitation in Microwave Chemistry", J. Organic Chem., 73, 36-47 (2008). https://doi.org/10.1021/jo7022697
  19. J. Zhao, X. Q. Yan, Y. Lei, Y. U. Zhao, Y. H. Huang, Y. Zhang, "Size control of Co-doped ZnO rods by changing the solvent, Adv. in Mater. Resear., 1, 75-81 (2012). https://doi.org/10.12989/amr.2012.1.1.075
  20. S. M. Salaken, E. Farzana, J. Podder, "Effect of Fe-doping on the structural and optical properties of ZnO thin films prepared by spray pyrolysis", J. Semiconductor., 34, 073003-1-073003-6 (2013). https://doi.org/10.1088/1674-4926/34/7/073003
  21. N. R. Yogamalar, R. Srinivasan, A. C. Bose, "Multi-capping agents in size confinement of ZnO nanostructured particles", Optical Materials, 31, 1570-1574 (2009). https://doi.org/10.1016/j.optmat.2009.03.002
  22. A. Moulahi, F. Sediri, "ZnO nanoswords and nanopills: Hydrothermal synthesis, characterization and optical properties", Ceramics International, 40, 943-950 (2014). https://doi.org/10.1016/j.ceramint.2013.06.090
  23. A.Sharma, B. P. Singh, "Effect of surface groups on the luminescence property of ZnO nanoparticles synthesized by sol-gel route", S. Dhar, Surface Sci., 606, L13-L17 (2012). https://doi.org/10.1016/j.susc.2011.09.006
  24. P. Jiang, J. J. Zhou, H. F. Fang, C.Y. Wang, Z. L. Wang, S.S. Xie, "Hierarchical Shelled ZnO Structures Made of Bunched Nanowire Arrays", Adv. Func. Mater., 17, 1303-1310 (2007). https://doi.org/10.1002/adfm.200600390