Skip to main content
Log in

Acidic fibroblast growth factor promotes hepatic differentiation of monkey embryonic stem cells

  • Articles
  • Cell Growth/Differentiation/Apoptosis
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Embryonic stem (ES) cells can replicate indefinitely and differentiate into all cell types, including hepatocytes. Research using primate ES cells is considered to be important for studies of potential cell therapies. Recently, we established cynomolgus monkey ES cells designated as CMK6. The CMK6 cell line is a useful tool for investigating the mechanism of differentiation in primate ES cells and developing cell therapies, because of its biological similarity to human ES cells. To examine whether cynomolgus monkey ES cells differentiate into hepatocytes, CMK6 cells were cultured with or without acidic fibroblast growth factor (aFGF). Evaluation of the hepatic differentiation was performed by analysis of the mRNA expression in early hepatic marker genes using the reverse transcriptase-polymerase chain reaction (RC-PCR). The protein expression of albumin (ALB) was also studied by immunocytochemistry. RT-PCR analyses revealed mRNA expressions of alpha-fetoprotein, transthyretin, and ALB in the presence of aFGF at 3 wk of differentiation, whereas no mRNA expression of these genes was detected in cells without aFGF. The protein expression of ALB in the presence of aFGF at 3 wk of differentiation was also confirmed by immunocytochemistry. However, tyrosine aminotransferase, which is a mature hepatic marker, was not detected in the presence or absence of aFGF at any stage of differentiation. These results suggested that aFGF successfully promoted in vitro differentiation of cynomolgus monkey ES cells to an early hepatic lineage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Asano, T.; Ageyama, N.; Takeuchi, K., et al. Engraftment and tumor formation after allogeneic in utero transplantation of primate embryonic stem cells. Transplantation. 76(7):1061–1067; 2003.

    Article  PubMed  Google Scholar 

  • Blanpain, C.; Lowry, W. E.; Geoghegan, A.; Polak, L.; Fuchs, E. Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell. 118:635–648; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Chinzei, R.; Tanaka, Y.; Shimizu-Saito, K., et al. Embryoid-body cells derived from a mouse embryonic stem cell line show differentiation into functional hepatocytes. Hepatology. 36:22–29; 2002.

    Article  PubMed  Google Scholar 

  • Chowdhury, J. R.; Chowdhury, N. R.; Strom, S. C.; Kaufman, S. S.; Horslen, S.; Fox, I. J. Human hepatocyte transplantation: gene therapy and more? Pediatrics. 102:647–648; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Demetriou, A. A.; Felcher, A.; Moscioni, A. D. Hepatocyte transplantation. A potential treatment for liver disease. Dig. Dis. Sci. 36:1320–1326; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Evans, M. J.; Kaufman, M. H. Establishment in culture of pluripotential cells from mouse embryos. Nature. 292:154–156; 1981.

    Article  PubMed  CAS  Google Scholar 

  • Goodwin, H. S.; Bicknese, A. R.; Chien, S. N.; Bogucki, B. D.; Quinn, C. O.; Wall, D. A. Multilineage differentiation activity by cells isolated from umbilical cord blood: expression of bone, fat, and neural markers. Biol. Blood Marrow Transplant. 7:581–588; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Hamazaki, T.; Iiboshi, Y.; Oka, M.; Papst, P. J.; Meacham, A. M.; Zon, L. I.; Terada, N. Hepatic maturation in differentiating embryonic stem cells in vitro. FEBS Lett. 497:15–19; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Honig, G. R.; Li, F.; Lu, S. J.; Vida, L. Hematopoietic differentiation of rhesus monkey embryonic stem cells. Blood Cells Mol. Dis. 32:5–10; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Itskovitz-Eldor, J.; Schuldiner, M.; Karsenti, D.; Eden, A.; Yanuka, O.; Amit, M.; Soreq, H.; Benvenisty, N. Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol. Med. 6:88–95; 2000.

    PubMed  CAS  Google Scholar 

  • Jiang, Y.; Jahagirdar, B. N.; Reinhardt, R. L., et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature. 418:41–49; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Jung, J.; Zheng, M.; Goldfarb, M.; Zaret, K. S. Initiation of mammalian liver development from endoderm by fibroblast growth factors. Science. 284:1998–2003; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Kakinuma, S.; Tanaka, Y.; Chinzei, R., et al. Human umbilical cord blood as a source of transplantable hepatic progenitor cells. Stem Cells. 21:217–227; 2003.

    Article  PubMed  Google Scholar 

  • Klug, M. G.; Soonpaa, M. H.; Koh, G. Y.; Field, L. J. Genetically selected cardiomyocytes from differentiating embryonic stem cells form stable intracardiac grafts. J. Clin. Invest. 98:216–224; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi, N.; Fujiwara, T.; Westerman, K. A., et al. Prevention of acute liver failure in rats with reversibly immortalized human hepatocytes. Science. 287:1258–1262; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Kuo, H. C.; Pau, K. Y.; Yeoman, R. R.; Mitalipov, S. M.; Okano, H.; Wolf, D. P. Differentiation of monkey embryonic stem cells into neural lineages. Biol. Reprod. 68:1727–1735; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Lavon, N.; Yanuka, O.; Benvenisty, N. Differentiation and isolation of hepatic-like cells from human embryonic stem cells. Differentiation. 72(5):230–238; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Lester, L. B.; Kuo, H. C.; Andrews, L.; Nauert, B.; Wolf, D. Directed differentiation of rhesus monkey ES cells into pancreatic cell phenotypes. Reprod. Biol. Endocrinol. 2:42; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Martin, G. R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. USA. 78:7634–7638; 1981.

    Article  PubMed  CAS  Google Scholar 

  • Nakano, T.; Kodama, H.; Honjo, T. Generation of lymphohematopoietic cells from embryonic stem cells in culture. Science. 265:1098–1101; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Okabe, S.; Forsberg-Nilsson, K.; Spiro, A. C.; Segal, M.; McKay, R. D. Developmen0105 of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro. Mech. Dev. 59:89–102; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Petersen, B. E.; Bowen, W. C.; Patrene, K. D., et al. Bone marrow as a potential source of hepatic oval cells. Science. 284:1168–1170; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Richert, L.; Binda, D.; Hamilton, G., et al. Evaluation of the effect of culture configuration on morphology, survival time, antioxidant status and metabolic capacities of cultured rat hepatocytes. Toxicol. In Vitro. 16:89–99; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Schuldiner, M.; Yanuka, O.; Itskovitz-Eldor, J.; Melton, D. A.; Benvenisty, N. Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proc. Natl. Acad. Sci. USA. 97:11307–11312; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz, R. E.; Reyes, M.; Koodie, L., et al. Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. J. Clin. Invest. 109:1291–1302; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Suemori, H.; Tada, T.; Torii, R., et al. Establishment of embryonic stem cell lines from cynomolgus monkey blastocysts produced by IVF or ICSI. Dev. Dyn. 222:273–279; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Takada, T.; Suzuki, Y.; Kondo, Y.; Kadota, N.; Kobayashi, K.; Nito, S.; Kimura, H.; Torii, R. Monkey embryonic stem cell lines expressing green fluorescent protein. Cell Transplant. 11(7):631–650; 2002.

    PubMed  Google Scholar 

  • Thomson, J. A.; Itskovitz-Eldor, J.; Shapiro, S. S.; Waknitz, M. A.; Swiergiel, J. J.; Marshall, V. S.; Jones, J. M. Embryonic stem cell lines derived from human blastocysts. Science. 282:1145–1147; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Thomson, J. A.; Kalishman, J.; Golos, T. G.; Durning, M.; Harris, C. P.; Becker, R. A.; Hearn, J. P. Isolation of a primate embryonic stem cell line. Proc. Natl. Acad. Sci. USA. 92:7844–7848; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Thomson, J. A.; Kalishman, J.; Golos, T. G.; Durning, M.; Harris, C. P.; Hearn, J. P. Pluripotent cell lines derived from common marmoset (Callithrix jacchus) blastocysts. Biol. Reprod. 55:254–259; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Toumadje, A.; Kusumoto, K.; Parton, A., et al. Pluripotent differentiation in vitro of murine ES-D3 embryonic stem cells. In Vitro Cell Dev. Biol. Anim. 39:449–453; 2003.

    Article  PubMed  Google Scholar 

  • Yamane, T.; Kunisada, T.; Yamazaki, H.; Era, T.; Nakano, T.; Hayashi, S. I. Development of osteoclasts from embryonic stem cells through a pathway that is c-fms but not c-kit dependent. Blood. 90:3516–3523; 1997.

    PubMed  CAS  Google Scholar 

  • Zuk, P. A.; Zhu, M.; Ashjian, P., et al. Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell. 13:4279–4295; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Zuk, P. A.; Zhu, M.; Mizuno, H., et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 7:211–228; 2001.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Tsukada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsukada, H., Takada, T., Shiomi, H. et al. Acidic fibroblast growth factor promotes hepatic differentiation of monkey embryonic stem cells. In Vitro Cell.Dev.Biol.-Animal 42, 83–88 (2006). https://doi.org/10.1290/0506039.1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1290/0506039.1

Key words

Navigation