Skip to main content
Log in

Glucuronidation and sulfation of 7-hydroxycoumarin in liver matrices from human, dog, monkey, rat, and mouse

  • Articles
  • Cell and Tissue Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Uridine 5′-diphospho-N-acetylgalactosamine glycosyltransferases (UGTs) and sulfotransferases (SULTs) are 2 phase II enzymes that are actively involved in detoxification processes as well as in drug metabolism. Compared with cytochrome P450 enzymes, the role of UGTs and SULTs in drug metabolism has received little attention. Liver microsomes, S9 fractions, and cryopreserved hepatocytes from human, dog, cynomolgus monkey, mouse, and rat were used as matrices in the study. Single compound, 7-hydroxycoumarin (7-HC), along with necessary cofactors was dosed into the matrices and incubated at 37° C; formation of two metabolites, 7-HC-glucuronide and 7-HC-sulfate, was determined with liquid chromatography with tandem mass spectrometry. Within the same species, the UGTs activities in microsomes and S9 fractions were comparable. In addition, UGTs activities in cryopreserved hepatocytes were lower than in the other matrices. Also, the SULTs activities were much higher in S9 fractions than in cryopreserved hepatocytes and microsomes. Species differences on UGTs and SULTs activities were also observed. The results indicated that S9 fractions, microsomes, and cryopreserved hepatocytes might be useful for UGTs metabolism study, whereas S9 fractions appear to be the most appropriate matrix for both UGTs and SULTs metabolism. Species differences with respect to phase II metabolism also need to be taken into consideration when selecting an in vitro system to evaluate various aspects of drug metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott, F. V.; Palmour, R. M. Morphine-6-glucuronide: analgesic effects and receptor binding profile in rats. Life Sci. 43(21):1685–1695; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Bock, K. W. Vertebrate UDP-glucuronosyltransferases: functional and evolutionary aspects. Biochem. Pharmacol. 66(5):691–696; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Donato, M. T.; Castell, J. V. Strategies and molecular probes to investigate the role of cytochrome P450 in drug metabolism: focus on in vitro studies. Clin. Pharmacokinet. 42(2):153–178; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Ekins, S.; Murray, G. I.; Burke, M. D.; Williams, J. A.; Marchant, N. C.; Hawksworth, G. M. Quantitative differences in phase I and II metabolism between rat precision-cut liver slices and isolated hepatocytes. Drug Metab. Dispos. 23(11):1274–1279; 1995.

    PubMed  CAS  Google Scholar 

  • Ekins, S.; Williams, J. A.; Murray, G. I.; Burke, M. D.; Marchant, N. C.; Engeset, J.; Hawksworth, G. M. Xenobiotic metabolism in rat, dog, and human precision-cut liver slices, freshly isolated hepatocytes, and vitrified precision-cut liver slices. Drug Metab. Dispos. 24(9):990–995; 1996.

    PubMed  CAS  Google Scholar 

  • Falany, C. N.; Kerl, E. A. Sulfation of minoxidil by human liver phenol sulfotransferase. Biochem. Pharmacol. 40(5):1027–1032; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Farrell, D. F.; McKhann, G. M. Characterization of cerebroside sulfotransferase from rat brain. J. Biol. Chem. 246(15):4694–4702; 1971.

    PubMed  CAS  Google Scholar 

  • Garcia, M.; Rager, J.; Wang, Q.; Strab, R.; Hidalgo, I. J.; Owen, A.; Li, J. Cryopreserved human hepatocytes as alternative in vitro model for cytochrome p450 induction studies. In Vitro Cell. Dev. Biol. 39A(7):283–287; 2003.

    Article  Google Scholar 

  • Gervasini, G.; Carrillo, J. A.; Benitez, J. Potential role of cerebral cytochrome p450 in clinical pharmacokinetics: modulation by endogenous compounds. Clin. Pharmacokinet. 43(11):693–706; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Goldstein, J. A.; Faletto, M. B. Advances in mechanisms of activation and deactivation of environmental chemicals. Environ. Health Perspect. 100:169–176; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Hauser, S. C.; Ziurys, J. C.; Gollan, J. L. A membrane transporter mediates access of uridine 5′-diphosphoglucuronic acid from the cytosol into the endoplasmic reticulum of rat hepatocytes: implications for glucuronidation reactions. Biochim. Biophys. Acta 967(2):149–157; 1988.

    PubMed  CAS  Google Scholar 

  • Hengstler, J. G.; Utesch, D.; Steinberg, P., et al. Cryopreserved primary hepatocytes as a constantly available in vitro model for the evaluation of human and animal drug metabolism and enzyme induction. Drug Metab. Rev. 32(1):81–118; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Iyer, K. R.; Sinz, M. W. Characterization of phase I and phase II hepatic drug metabolism activities in a panel of human liver preparations. Chem. Biol. Interact. 118(2):151–169; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Klaassen, C. D.; Liu, L.; Dunn, R. T., II. Regulation of sulfotransferase mRNA expression in male and female rats of various ages. Chem. Biol. Interact. 109(1–3):299–313; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Mackenzie, P. I.; Owens, I. S.; Burchell, B., et al. The UDP glycosyltransferase gene superfamily: recommended nomenclature update based on evolutionary divergence. Pharmacogenetics 7(4):255–269; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Muraoka, M.; Ishida, N. Molecular characterization of human UDP-glucuronic acid/UDP-N-acetylgalactosamine transporter, a novel nucleotide sugar transporter with dual substrate specificity. FEBS Lett. 495(1–2):87–93; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Otake, Y.; Hsieh, F.; Walle, T. Glucuronidation versus oxidation of the flavonoid galangin by human liver microsomes and hepatocytes. Drug Metab. Dispos. 30(5):576–581; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Ouyang, Y.; Lane, W. S.; Moore, K. L. Tyrosylprotein sulfotransferase: purification and molecular cloning of an enzyme that catalyzes tyrosine O-sulfation, a common posttranslational modification of eukaryotic proteins. Proc. Natl. Acad. Sci. USA 95(6):2896–2901; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Ouyang, Y. B.; Moore, K. L. Molecular cloning and expression of human and mouse tyrosylprotein sulfotransferase-2 and a tyrosylprotein sulfotransferase homologue in Caenorhabditis elegans. J. Biol. Chem. 273(38):24770–24774; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Rauchschwalbe, S. K.; Zuhlsdorf, M. T.; Wensing, G.; Kuhlmann, J. Glucuronidation of acetaminophen is independent of UGT1A1 promotor genotype. Int. J. Clin. Pharmacol. Ther. 42(2):73–77; 2004.

    PubMed  CAS  Google Scholar 

  • Roymans, D.; Van Looveren, C.; Leone, A., et al. Determination of cytochrome P540 1A2 and cytochrome P450 3A4 induction in cryopreserved human hepatocytes. Biochem. Pharmacol. 67(3):427–437; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Sherer, J. E.; Shipley, L. A.; Vandenbranden, M. R.; Binkley, S. N.; Wrighton, S. A. Comparisons of phase I and phase II in vitro hepatic enzyme activities of human, dog, rhesus monkey, and cynomolgus monkey. Drug Metab. Dispos. 23(11):1231–1241; 1995.

    Google Scholar 

  • Snodgrass, B.; Gagne, P.; Picano, P., et al. Comparison of major phase I and phase II metabolism reactions in cryopreserved, dog and human hepatocytes. Drug Metab. Rev. 35(S2): Abstract 73, 2003. URL: http://www.dekker.com/servlet/product/DOI/101081DMR120026877.

  • Swales, N. J.; Utesch, D. Metabolic activity of fresh and cryopreserved, dog hepatocyte suspensions. Xenobiotica 28:937–948; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Tephly, T. R.; Burchell, B. UDP-glucuronyltransferases: a family of detoxifying enzymes. Trends Pharmacol. Sci. 11:276–279; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Thohan, S.; Zurich, M. C.; Chung, H.; Weiner, M.; Kane, A. S.; Rosen, G. M. Tissue slices revisited: evaluation and development of a short-term incubation for integrated drug metabolism. Drug Metab. Dispos. 29(10):1337–1342; 2001.

    PubMed  CAS  Google Scholar 

  • Vaidyanathan, J. B.; Walle, T. Glucuronidation and sulfation of the tea flavonoid (−)-epicatechnin by the human and rat enzymes. Drug Metab. Dispos. 30(8):897–903; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Weinshilboum, R. M.; Otterness, D. M.; Aksoy, I. A.; Wood, T. C.; Her, C.; Raftogianis, R. B. Sulfation and sulfotransferases 1: sulfotransferase molecular biology: cDNAs and genes. FASEB J. 11(1):3–14; 1997.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismael J. Hidalgo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Q., Jia, R., Ye, C. et al. Glucuronidation and sulfation of 7-hydroxycoumarin in liver matrices from human, dog, monkey, rat, and mouse. In Vitro Cell.Dev.Biol.-Animal 41, 97–103 (2005). https://doi.org/10.1290/0501005.1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1290/0501005.1

Key words

Navigation