Skip to main content
Log in

Effects of simulated microgravity on the development and maturation of dissociated cortical neurons

  • Articles
  • Cell Growth/Differentiation/Apoptosis
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Although a wealth of evidence supports the hypothesis that some functions of the nervous system may be altered during exposure to microgravity, the possible changes in basic neuronal physiology are not easy to assess. Indeed, few studies have examined whether microgravity affects the development of neurons in culture. In the present study, a suspension of dissociated cortical cells from rat embryos were exposed to 24 h of simulated microgravity before plating in a normal adherent culture system. Both preexposed and control cells were used after a period of 7–10 d in vitro. The vitality and the level of reactive oxygen species of cultures previously exposed did not differ from those of normal cultures. Cellular characterization by immunostaining with a specific antibody displayed normal neuronal phenotype in control cells, whereas pretreatment in simulated microgravity revealed an increase of glial fibrillary acidic protein fluorescence in the elongated stellate glial cells. Electrophysiological recording indicated that the electrical properties of neurons preexposed were comparable with those of controls. Overall, our results indicate that a short time of simulated microgravity preexposure does not affect dramatically the ability of dissociated neural cells to develop and differentiate in an adherent culture system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brady, S.; Colman, D. R.; Brophy, P. Subcellular organization of the nervous system: organelles and their functions. In: Zigmond, M. J.; Bloom, F. E.; Landis, S. C.; Roberts, L. J.; Squire, L. R., ed. Fundamental neuroscience. San Diego, CA: Academic Press, 1999:71–106.

    Google Scholar 

  • Day, J. R.; Frank, A. T.; O'Callaghan, J. P.; DeHart, B. W. Effects of microgravity and bone morphogenetic protein II on GFAP in rat brain. J. Appl. Physiol. 85:716–722; 1998.

    PubMed  CAS  Google Scholar 

  • Eddleston, M.; Mucke, L. Molecular profile of reactive astrocytes—implications for their role in neurologic disease. Neuroscience 54:15–36; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Eng, L. F.; Ghirnikar, R. S. GFAP and astrogliosis. Brain Pathol. 4:229–237; 1994.

    PubMed  CAS  Google Scholar 

  • Freed, L. E.; Pellis, N.; Searby, N.; de Luis, J.; Preda, C.; Bordonaro, J.; Vunjak-Novakovic, G. Microgravity cultivation of cells and tissues. Gravit. Space Biol. Bull. 12(2):57–66; 1999.

    PubMed  CAS  Google Scholar 

  • Gruener, R. Neuronal responses to vector-averaged gravity: a search for gravisensing and adaptation mechanisms—a preliminary report. Uchu. Koku. Kankyo. Igaku. 35:63–83; 1998.

    PubMed  CAS  Google Scholar 

  • Gruener, R.; Hoeger, G. Vector-free gravity disrupts synapse formation in cell culture. Am. J. Physiol. 258:C489-C494; 1990.

    PubMed  CAS  Google Scholar 

  • Gruener, R.; Hoeger, G. Vector-averaged gravity alters myocyte and neuron properties in cell culture. Aviat. Space Environ. Med. 62:1159–1165; 1991.

    PubMed  CAS  Google Scholar 

  • Honegger, P. Aggregate cell cultures. Altex 6:29–36; 1989.

    PubMed  Google Scholar 

  • Honegger, P.; Lenoir, D.; Favrod, P. Growth and differentiation of aggregating fetal brain cells in a serum-free defined medium. Nature 282:305–308; 1979.

    Article  PubMed  CAS  Google Scholar 

  • Ishihara, A.; Ohira, Y.; Roy, R. R.; Nagaoka, S.; Sekiguchi, C.; Hinds, W. E.; Edgerton, V. R. Effects of 14 days of spaceflight and nine days of recovery on cell body size and succinate dehydrogenase activity of rat dorsal root ganglion neurons. Neuroscience 81:275–279; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Jessup, J. M.; Pellis, N. R. NASA biotechnology: cell science in microgravity. In Vitro Cell. Dev. Biol. 37A:2; 2001.

    Google Scholar 

  • Kallos, M. S.; Behie, L. A. Inoculation and growth conditions for high-cell-density expansion of mammalian neural stem cells in suspension bioreactors. Biotechnol. Bioeng. 63:473–483; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Kimelberg, H. K.; Noremberg, M. D. Astrocytes. Sci. Am. 260:66–76; 1989.

    Article  CAS  Google Scholar 

  • Krasnov, I. B. Gravitational neuromorphology. Adv. Space Biol. Med. 4:85–110; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Lebel, C. P.; Ishiropoulos, H.; Bondy, S. C. Evaluation of the probe 2′,7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem. Res. Toxicol. 5:227–231; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Lelkes, P. I.; Galvan, D. L.; Hayman, G. T.; Goodwin, T. J.; Chatman, D. Y.; Cherian, S.; Garcia, R. M.; Unsworth, B. R. Simulated microgravity conditions enhance differentiation of cultured PC12 cells towards the neuroendocrine phenotype. In Vitro Cell. Dev. Biol. 34A:316–325; 1998.

    Google Scholar 

  • Lewis, M.; Reynolds, J. L.; Cubano, L. A.; Hatton, J. P.; Lawless, B. D.; Piepmeier, E. H. Spaceflight alters microtubules and increases apoptosis in human lymphocytes (Jurkat). FASEB J. 12:1007–1018; 1998.

    PubMed  CAS  Google Scholar 

  • Maccioni, R. B.; Cambiazo, V. Role of microtubule-associated proteins in the control of microtubule assembly. Physiol. Rev. 75:835–864; 1995.

    PubMed  CAS  Google Scholar 

  • Miller, J. D.; McMillen, B. A.; McConnaughey, M. M.; Williams, H. L.; Fuller, C. A. Effects of microgravitys on brain neurotransmitter receptors. Eur. J. Pharmacol. 161:165–171; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Rucci, N.; Migliaccio, S.; Zani, B. M.; Taranta, A.; Teti, A. Characterization of the osteoblast-like cell phenotype under microgravity conditions in the NASA-approved rotating wall vessel bioreactor (RWV). J. Cell Biochem. 85(1):167–179; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Sen, A.; Kallos, M. S.; Behie, L. A. Expansion of mammalian neural stem cells in bioreactors: effects of power input and medium viscosity. Brain Res. Dev. Brain Res. 134:103–113 2002.

    Article  PubMed  CAS  Google Scholar 

  • Shafit-Zagardo, B.; Kalcheva, N. Making sense of the multiple MAP-2 transcripts and their role in the neuron. Mol. Neurobiol. 16:149–162; 1998.

    PubMed  CAS  Google Scholar 

  • Trapp, B. D.; Honegger, P.; Richelson, E.; Webster, H. D. Morphological differentiation of mechanically dissociated fetal rat brain in aggregating cell cultures. Brain Res. 160:117–130; 1979.

    Article  PubMed  CAS  Google Scholar 

  • Trapp, B. D.; Webster, H. D.; Johnson, D.; Quarles, R. H.; Cohen, S. R.; Murray, M. R. Myelin formation in rotation-mediated aggregating cell cultures: immunocytochemical, electron microscopic, and biochemical observations. J. Neurosci. 2:986–993; 1982.

    PubMed  CAS  Google Scholar 

  • Unsworth, B. R.; Lelkes, P. I. Growing tissues in microgravity. Nat. Med. 4:901–907; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Uva, B. M.; Masini, M. A.; Sturla, M.; Prato, P.; Passalacqua, M.; Giuliani, M.; Tagliaferro, G.; Strollo, F. Clinorotation-induced weightlessness influences the cytoskeleton of glial cell in culture. Brain Res. 934:132–139; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Vasquez, M. E. Neurobiological problems in long-term deep space flights. Adv. Space Res. 22:171–183; 1998.

    Article  Google Scholar 

  • Wang, H.; Joseph, J. A. Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic. Biol. Med. 27:612–616; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Wang, S. S. S.; Good, T. A. Effect of culture in a rotating wall bioreactor on the physiology of differentiated neuron-like PC12 and SH-SY5Y cells. J. Cell. Biochem. 83:574–584; 2001.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia di Loreto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crestini, A., Zona, C., Sebastiani, P. et al. Effects of simulated microgravity on the development and maturation of dissociated cortical neurons. In Vitro Cell.Dev.Biol.-Animal 40, 159–165 (2004). https://doi.org/10.1290/1543-706X(2004)40<159:EOSMOT>2.0.CO;2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1290/1543-706X(2004)40<159:EOSMOT>2.0.CO;2

Key words

Navigation