Skip to main content

Advertisement

Log in

Improved enzymatic isolation of fibroblasts for the creation of autologous skin substitutes

  • Articles
  • Biotechnology
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

The number of medical applications using autologous fibroblasts is increasing rapidly. We investigated thoroughly the procedure to isolate cells from skin using the enzymatic tissue dissociation procedure. Tissue digestion efficiency, cell viability, and yield were investigated in relation to size of tissue fragments, digestion volume to tissue ratio, digestion time, and importance of other protease activities present in Clostridium histolyticum collagenase (CHC) (neutral protease, clostripain, and trypsin). The results showed that digestion was optimal with small tissue fragments (2–3 mm3) and with volumes tissue ratios ≥2 ml/g tissue. For incubations ≤10 h, the digestion efficiency and cell isolation yields were significantly improved by increasing the collagenase, neutral protease, or clostripain activity, whereas trypsin activity had no effects. However, a too high proteolytic activity of one of the proteases present in CHC digestion solution or long exposure times interfered with cell viability and cell culture yields. The optimal range of CHC proteases activities per milliliter digestion solutions was determined for digestions ≤10 h (collagenase 2700–3900 Mandl U/ml, neutral protease 5100–10,000 caseinase U/ml, and clostripain 35–48 BAEE U/ml) and for longer digestions (>14 h) (collagenase 1350–3000 U/ml, neutral protease 2550–7700 U/ml, and clostripain 18–36 U/ml). Using these conditions, a maximum fibroblast expansion was achieved when isolated cells were seeded at 1×104 cells/cm2. These results did not only allow selection of optimal CHC batches able to digest dermal tissue with an high cell viability but also significantly increased the fibroblast yields, enabling us to produce autologous dermal tissue in a clinically acceptable time frame of 3 wk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allsopp, R. C.; Vaziri, H.; Patterson, C.; Goldstein, S.; Younglai, E. V.; Futcher, A. B.; Greider, C. W.; Harley, C. B. Telomere length predicts replicative capacity of human fibroblasts. Proc. Natl. Acad. Sci. USA 89(21):10114–10118; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Basir, I.; van der Burg, M. P.; Scheringa, M.; Tons, A.; Bouwman, E. Improved outcome of pig islet isolation by Pefabloc inhibition of trypsin. Transplant Proc. 29(4):1939–1941; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Beumer, G. J.; van Blitterswijk, C. A.; Ponec, M. Biocompatibility of a biodegradable matrix used as a skin substitute: an in vivo evaluation. J. Biomed. Mater. Res. 28(5):545–552; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Bond, M. D.; Van Wart, H. E. Characterization of the individual collagenases from Clostridium histolyticum. Biochemistry 23(13):3085–3091; 1984a.

    Article  PubMed  CAS  Google Scholar 

  • Bond, M. D.; Van Wart, H. E. Purification and separation of individual collagenases of Clostridium histolyticum using red dye ligand chromatography. Biochemistry 23(13):3077–3085; 1984b.

    Article  PubMed  CAS  Google Scholar 

  • Boyce, S. T.; Warden, G. D. Principles and practices for treatment of cutaneous wounds with cultured skin substitutes. Am. J. Surg. 183(4):445–456; 2002.

    Article  PubMed  Google Scholar 

  • Cavanagh, T. J.; Lakey, J. R.; Wright, M. J.; Fetterhoff, T.; Wile, K. Crude collagenase loses islet-isolating efficacy regardless of storage conditions. Transplant Proc. 29(4):1942–1944; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Chen, R. L.; James, R. F. Characterization of an important enzymatic component in collagenase that is essential for the effective digestion of the human and porcine pancreas. Cell Transplant. 10(8):709–716; 2001.

    PubMed  CAS  Google Scholar 

  • Chen, R. L.; Swift, S. M.; James, R. F. Identification of a high molecular weight enzyme component in crude C. histolyticum collagenase that is essential for the appropriate disaggregation of the pig and human pancreas. Transplant Proc. 31(1–2):1165–1166; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Douay, L. Experimental culture conditions are critical for ex vivo expansion of hematopoietic cells. J. Hematother. Stem. Cell Res. 10(3):341–346; 2001.

    Article  PubMed  CAS  Google Scholar 

  • French, M. F.; Mookhtiar, K. A.; Van Wart, H. E. Limited proteolysis of type I collagen at hyperreactive sites by class I and II Clostridium histolyticum collagenases: complementary digestion patterns. Biochemistry 26(3):681–687; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Galpin, J. E.; Casciato, D. A.; Richards, S. B. A phase I clinical trial to evaluate the safety and biological activity of HIV-IT (TAF) (HIV-I IIIBenv-transduced, autologous fibroblasts) in asymptomatic HIV-1 infected subjects. Hum. Gene Ther. 5(8):997–1017; 1994.

    PubMed  CAS  Google Scholar 

  • Glade, M. J.; Kanwar, Y. S.; Hefley, T. J. Enzymatic isolation of chondrocytes from immature rabbit articular cartilage and maintenance of phenotypic expression in culture. J. Bone Miner. Res. 6(3):217–226; 1991.

    PubMed  CAS  Google Scholar 

  • Hatton, M. W.; Berry, L. R.; Krestynski, F.; Sweeney, G. D.; Regoeczi, E. The role of proteolytic enzymes derived from crude bacterial collagenase in the liberation of hepatocytes from rat liver. Identification of two cell-liberating mechanisms. Eur. J. Biochem. 137(1–2):311–318; 1983.

    Article  PubMed  CAS  Google Scholar 

  • Hefley, T. J. Utilization of FPLC-purified bacterial collagenase for the isolation of cells from bone. J. Bone Miner. Res. 2(6):505–516; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Hefley, T.; Cushing, J.; Brand, J. S. Enzymatic isolation of cells from bone: cytotoxic enzymes of bacterial collagenase. Am. J. Physiol. 240(5):C234-C238; 1981.

    PubMed  CAS  Google Scholar 

  • Hefley, T. J.; Stern, P. H.; Brand, J. S. Enzymatic isolation of cells from neonatal calvaria using two purified enzymes from Clostridium histolyticum. Exp. Cell Res. 149(1):227–236; 1983.

    Article  PubMed  CAS  Google Scholar 

  • Hentzer, B.; Kobayasi, T. Enzymatic liberation of viable cells of human skin. Acta Derm. Venereol. 58(3):197–202; 1978.

    PubMed  CAS  Google Scholar 

  • Johnson, P. R.; White, S. A.; London, N. J. Collagenase and human islet isolation. Cell Transplant 5(4):437–452; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Karakiulakis, G.; Papadimitriu, E.; Missirlis, E.; Maragoudakis, M. E. Effect of divalent metal ions on collagenase from Clostridium histolyticum. Biochem. Int. 24(3):397–404; 1991.

    PubMed  CAS  Google Scholar 

  • Keller, G.; Sebastian, J.; Lacombe, U.; Toft, K.; Lask, G.; Revazova, E. Safety of injectable autologous human fibroblasts. Bull. Exp. Biol. Med. 130(8):786–789; 2000.

    PubMed  CAS  Google Scholar 

  • Klock, G.; Kowalski, M. B.; Hering, B. J., et al. Fractions from commercial collagenase preparations: use in enzymic isolation of the islets of Langerhans from porcine pancreas. Cell Transplant. 5(5):543–551; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Kono, T. Roles of collagenases and other proteolytic enzymes in the dispersal of animal tissues. Biochim. Biophys. Acta 178(2):397–400; 1969.

    PubMed  CAS  Google Scholar 

  • Kreis, R. W.; Hoekstra, M. J.; Mackie, D. P.; Vloemans, A. F.; Hermans, R. P. Historical appraisal of the use of skin allografts in the treatment of extensive full skin thickness burns at the Red Cross Hospital Burns Centre, Beverwijk, The Netherlands. Burns 18 (Suppl. 2):S19-S22; 1992.

    Article  PubMed  Google Scholar 

  • Lakey, J. R.; Cavanagh, T. J.; Zieger, M. A.; Wright, M. Evaluation of a purified enzyme blend for the recovery and function of canine pancreatic islets. Cell Transplant. 7(4):365–372; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Lamme, E. N.; Van Leeuwen, R. T.; Brandsma, K.; Van Marle, J.; Middelkoop, E. Higher numbers of autologous fibroblasts in an artificial dermal substitute improve tissue regeneration and modulate scar tissue formation. J. Pathol. 190(5):595–603; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Lamme, E. N.; van Leeuwen, R. T.; Jonker, A.; van Marle, J.; Middelkoop, E. Living skin substitutes: survival and function of fibroblasts seeded in a dermal substitute in experimental wounds. J. Investig. Dermatol. 111(6):989–995; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Lamme, E. N.; van Leeuwen, R. T.; Mekkes, J. R.; Middelkoop, E. Allogeneic fibroblasts in dermal substitutes induce inflammation and scar formation. Wound Repair Regen 10(3):152–160; 2002.

    Article  PubMed  Google Scholar 

  • Linetsky, E.; Bottino, R.; Lehmann, R.; Alejandro, R.; Inverardi, L.; Ricordi, C. Improved human islet isolation using a new enzyme blend, liberase. Diabetes 46(7):1120–1123; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Mallya, S. K.; Mookhtiar, K. A.; Van Wart, H. E. Kinetics of hydrolysis of type I, II, and III collagens by the class I and II Clostridium histolyticum collagenases. J. Protein Chem. 11(1):99–107; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Matsushita, O.; Okabe, A. Clostridial hydrolytic enzymes degrading extracellular components. Toxicon 39(11):1769–1780; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, W. M. Hydrolysis at arginylproline in polypeptides by clostridiopeptidase B. Science 162(851):374–375; 1968.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, W. M.; Harrington, W. F. Purification and properties of clostridiopeptidase B (Clostripain). J. Biol. Chem. 243(18):4683–4692; 1968.

    PubMed  CAS  Google Scholar 

  • Normand, J.; Karasek, M. A. A method for the isolation and serial propagation of keratinocytes, endothelial cells, and fibroblasts from a single punch biopsy of human skin. In Vitro Cell. Dev. Biol. 31A(6):447–455; 1995.

    Google Scholar 

  • Pellegrini, G.; Ranno, R.; Stracuzzi, G.; Bondanza, S.; Guerra, L.; Zambruno, G.; Micali, G.; De Luca, M. The control of epidermal stem cells (holoclones) in the treatment of massive full-thickness burns with autologous keratinocytes cultured on fibrin. Transplantation 68(6):868–879; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Ramirez, R. D.; Morales, C. P.; Herbert, B. S.; Rohde, J. M.; Passons, C.; Shay, J. W.; Wright, W. E. Putative telomere-independent mechanisms of replicative aging reflect inadequate growth conditions. Genes Dev. 15(4):398–403; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Roth, D. A.; Tawa, N. E., Jr.; O'Brien, J. M.; Treco, D. A.; Selden, R. F. Nonviral transfer of the gene encoding coagulation factor VIII in patients with severe hemophilia A. N Engl. J. Med. 344(23):1735–1742; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Satyanarayana, A.; Wiemann, S. U.; Buer, J., et al. Telomere shortening impairs organ regeneration by inhibiting cell cycle re-entry of a subpopulation of cells. EMBO J. 22(15):4003–4013; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Tamm, I.; Kikuchi, T.; Wang, E.; Pfeffer, L. M. Growth rate of control and beta-interferon-treated human fibroblast populations over the course of their in vitro life span. Cancer Res. 44(6):2291–2296; 1984.

    PubMed  CAS  Google Scholar 

  • Toma, J. G.; Akhavan, M.; Fernandes, K. J.; Barnabe-Heider, F.; Sadikot, A.; Kaplan, D. R.; Miller, F. D. Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat. Cell Biol. 3(9):778–784; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Ugele, B.; Lange, F. Isolation of endothelial cells from human placental microvessels: effect of different proteolytic enzymes on releasing endothelial cells from villous tissue. In Vitro Cell. Dev. Biol. 37A(7):408–413; 2001.

    Article  Google Scholar 

  • Vacanti, J. P.; Langer, R.; Upton, J.; Marler, J. J. Transplantation of cells in matrices for tissue regeneration. Adv. Drug Deliv. Rev. 33(1–2):165–182; 1998.

    PubMed  Google Scholar 

  • van den Bogaerdt, A. J.; van Zuijlen, P. P.; van Galen, M.; Lamme, E. N.; Middelkoop, E.. The suitability of cells from different tissues for use in tissue-engineered skin substitutes. Arch. Dermatol. Res. 294(3):135–142; 2002.

    Article  PubMed  Google Scholar 

  • van Dorp, A. G.; Verhoeven, M. C.; Koerten, H. K.; van Blitterswijk, C. A.; Ponec, M. Bilayered biodegradable poly(ethylene glycol)/poly(butylene terephthalate) copolymer (Polyactive) as substrate for human fibroblasts and keratinocytes. J. Biomed. Mater. Res. 47 (3):292–300; 1999.

    Article  PubMed  Google Scholar 

  • Viko, H.; Osnes, J. B.; Sjetnan, A. E.; Skomedal, T. Improved isolation of cardiomyocytes by trypsination in addition to collagenase treatment. Pharmacol. Toxicol. 76(1):68–71; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Vos-Scheperkeuter, G. H.; Vonk, M. W.; Wolters, G. H.; van Schilfgaarde, R. Collagen degradation by three Clostridium histolyticum collagenase fractions with different substrate specificities. Transplant Proc. 26(2):641–642; 1994.

    PubMed  CAS  Google Scholar 

  • Wang, H. J.; Bertrand-de Haas, M.; van Blitterswijk, C. A.; Lamme, E. N. Engineering of a dermal equivalent: seeding and culturing fibroblasts in PEGT/PBT copolymer scaffolds. Tissue Eng. 9(5):909–917; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Watson, D.; Keller, G. S.; Lacombe, V.; Fodor, P. B.; Rawnsley, J.; Lask, G. P. Autologous fibroblasts for treatment of facial rhytids and dermal depressions. A pilot study. Arch. Facial. Plast Surg. 1(3):165–170; 1999.

    Article  PubMed  CAS  Google Scholar 

  • West, T. B.; Alster, T. S. Autologous human collagen and dermal fibroblasts for soft tissue augmentation. Dermatol. Surg. 24(5):510–512; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Williams, S. K.; McKenney, S.; Jarrell, B. E. Collagenase lot selection and purification for adipose tissue digestion. Cell Transplant. 4(3):281–289; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Wolters, G. H.; van Suylichem, P. T.; van Deijnen, J. H.; van Schilfgaarde, R. Factors influencing the isolation process of islets of Langerhans. Horm. Metab. Res. 25 (Suppl.):20–26; 1990.

    CAS  Google Scholar 

  • Wolters, G. H.; Vos-Scheperkeuter, G. H.; Lin, H. C.; van Schilfgaarde, R. Different roles of class I and class II Clostridium histolyticum collagenase in rat pancreatic islet isolation. Diabetes 44(2):227–233; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Wolters, G. H.; Vos-Scheperkeuter, G. H.; van Deijnen, J. H.; van Schilfgaarde, R. An analysis of the role of collagenase and protease in the enzymatic dissociation of the rat pancreas for islet isolation. Diabetologia 35(8):735–742; 1992.

    PubMed  CAS  Google Scholar 

  • Yoshida, E.; Noda, H. Isolation and characterization of collagenases I and II from Clostridium histolyticum. Biochim. Biophys. Acta 105(3):562–574; 1965.

    PubMed  CAS  Google Scholar 

  • Zein, I.; Hutmacher, D. W.; Tan, K. C.; Teoh, S. H. Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 23(4):1169–1185; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Zuk, P. A.; Zhu, M.; Ashjian, P., et al. Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell 13(12):4279–4295; 2002.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evert N. Lamme.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., van Blitterswijk, C.A., Haas, M.BD. et al. Improved enzymatic isolation of fibroblasts for the creation of autologous skin substitutes. In Vitro Cell.Dev.Biol.-Animal 40, 268–277 (2004). https://doi.org/10.1290/0408055.1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1290/0408055.1

Key words

Navigation