NIBS-driven brain plasticity

Carmelo Chisari, Chiara Fanciullacci, Giuseppe Lamola, Bruno Rossi, Leonardo G. Cohen

Abstract


Through plasticity the brain is able to change its function and to rearrange following injury or environmental changes. In recent years, it was shown that non-invasive brain stimulation (NIBS) techniques, especially transcra- nial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) can contribute to understand how these plastic changes occur. Additionally, the literature suggests that TMS and tDCS may be used as interven- tional strategies to improve neurorehabilitation efforts and arguably recovery of motor function after brain lesions. This review focuses on the use of NIBS in experimental protocols for evaluation and modulation of brain plastic- ity, the factors contributing to the inter-individual variability of response, proposed mechanisms and difficulties in translating findings from small proof of principle studies through the pipeline to clinical practice.


Keywords


Plasticity; Non-invasive brain stimulation (NIBS); Neuromodulation; Transcranial magnetic stimulation (TMS); Transcranial direct current stimulation (tDCS).

Full Text:

PDF

References


• Agostino R., Iezzi E., Dinapoli L., Gilio F., Conte A., Mari F., Berardelli A. Effects of 5 Hz subthreshold magnetic stimulation of primary motor cortex on fast finger movements in normal subjects. Exp. Brain Res., 180, 105–111, 2007.

• Albert D.J. The effect of spreading depression on the consolidation of learning. Neuropsychologia,4, 49–64. 1966a.

• Albert D.J. The effects of polarizing currents on the consolidation of learning. Neuropsychologia,4, 65–77. 1966b.

• Ameli M., Grefkes C., Kemper F, Riegg F.P., Rehme A.K., Karbe H., Fink G.R., Nowak D.A. Differential effects of high-frequency repetitive transcranial magnetic stimulation over ipsilesional primary motor cortex in cortical and subcortical middle cerebral artery stroke. Annals of Neurology., vol. 66, no. 3, pp. 298–309, 2009.

• Antal A., Boros K., Poreisz C., Chaieb L., Terney D., & Paulus W. Comparatively weak after-effects of transcranial alternating current stimulation (tACS) on cortical excitability in humans. Brain Stimulation., 1(2), 97-105, 2008.

• Antal A. and Paulus W. Transcranial alternating current stimulation (tACS). Front Hum Neurosci.; 7: 317, 2013.

• Bartos M., Vida I., and Jonas P. Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat. Rev. Neurosci. 8, 45–56, 2007.

• Bikson M., Rahman A. & Datta A. Computational models of transcranial direct current stimulation. Clin. EEG Neurosci., 43, 176–183, 2012.

• Bütefisch C.M., Khurana V., Kopylev L. & Cohen L.G. Enhancing encoding of a motor memory in the primary motor cortex by cortical stimulation. J. Neurophysiol., 91, 2110–2116, 2004.

• Buch E. R., Mars R.B., Boorman E.D., & Rushworth M.F. A network centered on ventral premotor cortex exerts both facilitatory and inhibitory control over primary motor cortex during action reprogramming. J Neurosci, 30(4), 1395-1401, 2010.

• Carmichael S.T. Cellular and molecular mechanisms of neural repair after stroke: making waves. Annals of Neurology, vol. 59, no. 5, pp. 735–742, 2006.

• Censor, N., M.A. Dimyan, and L.G. Cohen. Modification of existing human motor memories is enabled by primary cortical processing during memory reactivation. Curr Biol 20(17): p. 1545-9, 2010.

• Cheeran B., L. Cohen, B. Dobkin, G. Ford, R. Greenwood, D. Howard, M. Husain, M. Macleod, R. Nudo, J. Rothwell, A. Rudd, J. Teo, N. Ward & S. Wolf. The future of restorative neurosciences in stroke: driving the translational research pipeline from basic science to rehabilitation of people after stroke. Neurorehabil Neural Repair 23(2): p. 97-107, 2009.

• Cheeran B., Talelli P., Mori F., Koch G., Suppa A., Edwards M., Houlden H., Bhatia K., Greenwood R., Rothwell J.C. A common polymorphism in the brain-derived neurotrophic factor gene (BDNF) modulates human cortical plasticity and the response to rTMS. J Physiol., 586(Pt 23):5717e25, 2008.

• Chen R. Classen J., Gerloff C., Celnik P., Wassermann E.M., Hallett M., Cohen L.G. Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology., 48, 1398–1403, 1997.

• Cohen, L.G., P. Celnik, A. Pascual-Leone, B. Corwell, L. Falz, J.

• Agostino R., Iezzi E., Dinapoli L., Gilio F., Conte A., Mari F., Berardelli A. Effects of 5 Hz subthreshold magnetic stimulation of primary motor cortex on fast finger movements in normal subjects. Exp. Brain Res., 180, 105–111, 2007.

• Albert D.J. The effect of spreading depression on the consolidation of learning. Neuropsychologia,4, 49–64. 1966a.

• Albert D.J. The effects of polarizing currents on the consolidation of learning. Neuropsychologia,4, 65–77. 1966b.

• Ameli M., Grefkes C., Kemper F, Riegg F.P., Rehme A.K., Karbe H., Fink G.R., Nowak D.A. Differential effects of high-frequency repetitive transcranial magnetic stimulation over ipsilesional primary motor cortex in cortical and subcortical middle cerebral artery stroke. Annals of Neurology., vol. 66, no. 3, pp. 298–309, 2009.

• Antal A. and Paulus W. Transcranial alternating current stimulation (tACS). Front Hum Neurosci.; 7: 317, 2013.

• Antal A., Boros K., Poreisz C., Chaieb L., Terney D., & Paulus W. Comparatively weak after-effects of transcranial alternating current stimulation (tACS) on cortical excitability in humans. Brain Stimulation., 1(2), 97-105, 2008.

• Bartos M., Vida I., and Jonas P. Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat. Rev. Neurosci. 8, 45–56, 2007.

• Bikson M., Rahman A. & Datta A. Computational models of transcranial direct current stimulation. Clin. EEG Neurosci., 43, 176–183, 2012.

• Buch E. R., Mars R.B., Boorman E.D., & Rushworth M.F. A network centered on ventral premotor cortex exerts both facilitatory and inhibitory control over primary motor cortex during action reprogramming. J Neurosci, 30(4), 1395-1401, 2010.

• Bütefisch C.M., Khurana V., Kopylev L. & Cohen L.G. Enhancing encoding of a motor memory in the primary motor cortex by cortical stimulation. J. Neurophysiol., 91, 2110–2116, 2004.

• Carmichael S.T. Cellular and molecular mechanisms of neural repair after stroke: making waves. Annals of Neurology, vol. 59, no. 5, pp. 735–742, 2006.

• Censor, N., M.A. Dimyan, and L.G. Cohen. Modification of existing human motor memories is enabled by primary cortical processing during memory reactivation. Curr Biol 20(17): p. 1545-9, 2010.

• Cheeran B., L. Cohen, B. Dobkin, G. Ford, R. Greenwood, D. Howard, M. Husain, M. Macleod, R. Nudo, J. Rothwell, A. Rudd, J. Teo, N. Ward & S. Wolf. The future of restorative neurosciences in stroke: driving the translational research pipeline from basic science to rehabilitation of people after stroke. Neurorehabil Neural Repair 23(2): p. 97-107, 2009.

• Cheeran B., Talelli P., Mori F., Koch G., Suppa A., Edwards M., Houlden H., Bhatia K., Greenwood R., Rothwell J.C. A common polymorphism in the brain-derived neurotrophic factor gene (BDNF) modulates human cortical plasticity and the response to rTMS. J Physiol., 586(Pt 23):5717e25, 2008.

• Chen R. Classen J., Gerloff C., Celnik P., Wassermann E.M., Hallett M., Cohen L.G. Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology., 48, 1398–1403, 1997.

• Cohen, L.G., P. Celnik, A. Pascual-Leone, B. Corwell, L. Falz, J. Dambrosia, M. Honda, N. Sadato, C. Gerloff, M.D. Catala, and M. Hallett, Functional relevance of cross-modal plasticity in blind humans. Nature 389(6647): p. 180-3, 1997.

• Conchou F., Loubinoux I., Castel-Lacanal E, Le Tinnier A., Gerdelat-Mas A., Faure-Marie N., Gros H., Thalamas C., Calvas F., Berry I., Chollet F., Simonetta Moreau M. Neural substrates of low-frequency repetitive transcranial magnetic stimulation during movement in healthy subjects and acute stroke patients. A PET study. Human BrainMapping., vol. 30, no. 8, pp. 2542–2557, 2009.

• Conde V., Vollmann H., Sehm B., Taubert M., Villringer A., Ragert P. Cortical thickness in primary sensorimotor cortex influences the effectiveness of paired associative stimulation. Neuroimage., 60(2):864e70, 2012.

• Cramer, S.C., M. Sur, B.H. Dobkin, C. O'Brien, T.D. Sanger, J.Q. Trojanowski, J.M. Rumsey, R. Hicks, J. Cameron, D. Chen, W.G. Chen, L.G. Cohen, C. deCharms, C.J. Duffy, G.F. Eden, E.E. Fetz, R. Filart, M. Freund, S.J. Grant, S. Haber, P.W. Kalivas, B. Kolb, A.F. Kramer, M. Lynch, H.S. Mayberg, P.S. McQuillen, R. Nitkin, A. Pascual-Leone, P. Reuter-Lorenz, N. Schiff, A. Sharma, L. Shekim, M. Stryker, E.V. Sullivan, and S. Vinogradov, Harnessing neuroplasticity for clinical applications. Brain 134(Pt 6): p. 1591-609, 2011.

• Daskalakis Z. J., Farzan F., Barr M. S., Maller J. J., Chen R., & Fitzgerald P. B. Long-interval cortical inhibition from the dorsolateral prefrontal cortex: a TMS-EEG study. Neuropsychopharmacology, 33(12), 2860-2869, 2008.

• Dayan E., & Cohen L.G. Neuroplasticity subserving motor skill learning. Neuron, 72(3), 443-454, 2011.

• Dayan E., Censor N., Buch E.R., Sandrini M. & Cohen L.G. Noninvasive brain stimulation: from physiology to network dynamics and back. Nature Neuroscience, 16 (7): 838-844, 2013.

• Di Filippo M., Tozzi A., Costa C., Belcastro V., Tantucci M., Picconi B., Calabresi P. Plasticity and repair in the post-ischemic brain. Neuropharmacology, vol. 55, no. 3, pp. 353–362, 2008.

• Di Lazzaro V., Oliviero A., Profice P., Insola A., Mazzone P., Tonali P., & Rothwell J. C. Direct demonstration of interhemispheric inhibition of the human motor cortex produced by transcranial magnetic stimulation. Experimental brain research, 124(4), 520-524, 1999.

• Di Lazzaro V., Profice P., Pilato F., Capone F., Ranieri F., Pasqualetti P., Colosimo C., Pravatà E., Cianfoni A., Dileone M. Motor cortex plasticity predicts recovery in acute stroke. Cerebral Cortex, vol. 20, no. 7, pp. 1523–1528, 2010.

• Di Lazzaro V., Rothwell J.C., Talelli P., Capone F., Ranieri F., Wallace A.C., ... & Dileone, M. Inhibitory theta burst stimulation of affected hemisphere in chronic stroke: A proof of principle, sham-controlled study. Neuroscience letters, 553, 148-152, 2013.

• Dimyan, M.A. & L.G. Cohen. Neuroplasticity in the context of motor rehabilitation after stroke. Nat Rev Neurol. 7(2): p. 76-85, 2011.

• Elbert, T., W. Lutzenberg, B. Rockstroh, and N. Birbaumer, The influence of low-level transcortical DC-currents on response speed in humans. Intl J Neuroscience 14: p. 101-114, 1981.

• Fertonani A., Pirulli C., Miniussi C. Random noise stimulation improves neuroplasticity in perceptual learning. J Neurosci;31(43):15416e23, 2011.

• Feurra M., Bianco G., Santarnecchi E., Del Testa M.,Rossi A., and Rossi S. Frequency-dependent tuningofthe human motor system induced by transcranial oscillatory potentials. J. Neurosci. 31, 12165–12170, 2011.

• Fridman, E.A., T. Hanakawa, M. Chung, F. Hummel, R.C. Leiguarda, and L.G. Cohen. Reorganization of the human ipsilesional premotor cortex after stroke. Brain 127(Pt 4): p. 747-58, 2004.

• Fritsch, B., J. Reis, K. Martinowich, H.M. Schambra, Y. Ji, L.G. Cohen, and B. Lu. Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning. Neuron 66(2): p. 198-204, 2010.

• Grefkes C., Nowak D.A., Wang L.E., Dafotakis M., Eickhoff S.B., & Fink G.R. Modulating cortical connectivity in stroke patients by rTMS assessed with fMRI and dynamic causal modeling. NeuroImage, vol. 50, no. 1, pp. 233–242, 2010.

• Hallett M. Transcranial magnetic stimulation: a primer. Neuron 55, 187–199, 2007.

• Huang Y.-Z., Edwards M.J., Rounis E., Bhatia K.P. & Rothwell J.C. Theta burst stimulation of the human motor cortex. Neuron 45, 201–206, 2005.

• Huerta P.T. & Volpe B.T. Transcranial magnetic stimulation, synaptic plasticity and network oscillations. J. Neuroeng. Rehabil. 6, 7, 2009.

• Khedr E.M., Abdel-Fadeil M.R., Farghali A. & Qaid M. Role of 1 and 3 Hz repetitive transcranial magnetic stimulation onmotor function recovery after acute ischaemic stroke. European Journal of Neurology, vol. 16, no. 12, pp. 1323–1330, 2009.

• Khedr E.M., Etraby A.E., Hemeda M., Nasef A.M. & Razek A.A.M. Long-term effect of repetitive transcranial magnetic stimulation on motor function recovery after acute ischemic stroke. Acta Neurologica Scandinavica, vol. 121, no. 1, pp. 30–37, 2010.

• Kim Y.H., Park J.W., Ko M.H., Jang S.H. & Lee P.K. Facilitative effect of high frequency subthreshold repetitive transcranial magnetic stimulation on complex sequential motor learning in humans. Neurosci. Lett. 367, 181–185, 2004.

• Kim Y.H., You S.H., Ko M.H., Park J.W., Lee K.H., Jang S.H., Yoo W.K., Hallett M. Repetitive transcranial magnetic stimulation-induced corticomotor excitability and associated motor skill acquisition in chronic stroke. Stroke, vol. 37, no. 6, pp. 1471–1476, 2006.

• Kinsbourne, M. Dichotic imbalance due to isolated hemisphere occlusion or directional rivalry? Brain Lang. 11(1): p. 221-4, 1980.

• Kinsbourne, M. Hemi-neglect and hemisphere rivalry. Adv Neurol 18: p. 41-9 , 1977.

• Koch G., Fernandez Del Olmo M., Cheeran B., Ruge D., Schippling S., Caltagirone C., & Rothwell J. C. Focal stimulation of the posterior parietal cortex increases the excitability of the ipsilateral motor cortex. J Neurosci, 27(25), 6815-6822, 2007.

• Lefaucheur J.P., André-Obadia N., Antal A., Ayache S.S., Baeken C., Benninger D.H., ... & Garcia-Larrea L. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clinical Neurophysiology, 2014.

• Liebetanz D., Nitsche M.A., Tergau F., Paulus W. Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability. Brain;125(Pt 10):2238e47, 2002.

• Liew S.L., Santarnecchi E., Buch E., Cohen L. Noninvasive brain stimulation in neurorehabilitation: Local and distant effects for motor recovery. Frontiers in human neuroscience, 8: 378, 2014.

• Marshall L., Helgadottir H., Molle M., and Born J. Boosting slow oscillations during sleep potentiates memory. Nature 444, 610–613, 2006.

• Miniussi C., Vallar G. Brain stimulation and behavioural cognitive rehabilitation: a new tool for neurorehabilitation? Neuropsychol Rehabil;21(5): 553e9, 2011.

• Montez T., Poil S.S., Jones B.F., Manshanden I., Verbunt J.P., vanDijk B.W. Brussaardc A.B., van Ooyenc A., Cornelis J. Stamb, Scheltense P. & Linkenkaer-Hansen K. Altered temporal correlations in parietal alpha and prefrontal theta oscillations in early-stage Alzheimer disease. Proc. Natl. Acad.Sci.USA 106, 1614–1619, 2009.

• Muellbacher W., Zlemann U., Wissel J., Dang N., Kofler M., Facchini S., Boroojerdi B., Poewe W., Hallett M. Early consolidation in human primary motor cortex. Nature, vol. 415, no. 6872, pp. 640–644, 2002.

• Murase N., Duque J., Mazzocchio R. & Cohen L.G. Influence of interhemispheric interactions on motor function in chronic stroke. Annals of Neurology, vol. 55, no. 3, pp. 400–409, 2004.

• Neuling T., Rach S., Wagner S., Wolters C. H., and Herrmann C. S. Good vibrations: oscilla- tory phase shapes perception. Neuroimage 63, 771–778, 2012.

• Nitsche M.A. & Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J. Physiol. (Lond.) 527, 633–639, 2000.

• Nitsche M.A. & Paulus W. Transcranial direct current stimulation - update 2011. Restor Neurol Neurosci;29(6):463e92, 2011.

• Nitsche M.A., Seeber A., Frommann K., Klein C.C., Rochford C., Nitsche M.S., Fricke K., Liebetanz D., Lang N., Antal A., Paulus W., Tergau. Modulating parameters of excitability during and after transcranial direct current stimulation of the human motor cortex. J. Physiol. (Lond.) 568, 291–303, 2005.

• Nowak D.A., Grefkes C., Dafotakis M. et al. Effects of low-frequency repetitive transcranial magnetic stimulation of the contralesional primary motor cortex on movement kinematics and neural activity in subcortical stroke. Archives of Neurology, vol. 65, no. 6, pp. 741–747, 2008.

• Pascual-Leone A., Amedi A., Fregni F. & Merabet L. B. The plastic human brain cortex. Annu. Rev. Neurosci., 28, 377-401, 2005.

• Pascual-Leone A., Grafman J. & Hallett M. Modulation of cortical motor output maps during development of implicit and explicit knowledge. Science 263, 1287–1289, 1994.

• Pascual-Leone A., Tarazona F., Keenan J., Tormos J.M., Hamilton R. & Catala M.D. Transcranial magnetic stimulation and neuroplasticity. Neuropsychologia, vol. 37, no. 2, pp. 207–217, 1998.

• Pasley B.N., Allen E.A. & Freeman R.D. State-dependent variability of neuronal responses to transcranial magnetic stimulation of the visual cortex. Neuron 62, 291–303, 2009.

• Paulus W. Transcranial electrical stimulation (tES–tDCS; tRNS, tACS) methods. Neuropsychological rehabilitation 21.5: 602-617, 2011.

• Perini F., Cattaneo L., Carrasco M. & Schwarzbach J.V. Occipital transcranial magnetic stimulation has an activity-dependent suppressive effect. J. Neurosci. 32, 12361–12365, 2012.

• Plewnia C., Zwissler B., Längst I., Maurer B., Giel K., & Krüger R. Effects of transcranial direct current stimulation (tDCS) on executive functions: Influence of COMT Val/Met polymorphism. Cortex, 49(7), 1801-1807, 2013.

• Reato D., Rahman A., Bikson M. & Parra L.C. Effects of weak transcranial alternating current stimulation on brain activity—a review of known mechanisms from animal studies. Front Hum Neurosci. 23;7:687, 2013.

• Reis J, Swayne O.B., Vandermeeren Y., Camus M., Dimyan M.A., Harris-Love M., Perez M.A., Ragert P., Rothwell J.C., Cohen L.G.Contribution of transcranial magnetic stimulation to the understanding of cortical mechanisms involved in motor control. J. Physiol. (Lond.) 586, 325–351, 2008.

• Reis J., H.M. Schambra, L.G. Cohen, E.R. Buch, B. Fritsch, E. Zarahn, P.A. Celnik, and J.W. Krakauer. Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proc Natl Acad Sci U S A 106(5): p. 1590-5, 2009.

• Ridding M.C., Ziemann U. Determinants of the induction of cortical plasticity by non-invasive brain stimulation in healthy subjects. J Physiol; 588(Pt 13):2291e304, 2010.

• Sandrini M. and Cohen L.G. Noninvasive brain stimulation in neurorehabilitation. Handbook of Clinical Neurology, Vol. 116, 2013.

• Schaechter J.D. "Motor rehabilitation and brain plasticity after hemiparetic stroke." Progress in neurobiology 73.1: 61-72, 2004.

• Schambra, H.M., M. Abe, D.A. Luckenbaugh, J. Reis, J.W. Krakauer, and L.G. Cohen. Probing for hemispheric specialization for motor skill learning: a transcranial direct current stimulation study. J Neurophysiol106(2): p. 652-61, 2011.

• Seniów J., Bilik M., Lesniak M., Waldowski K., Iwanski S., Czlonkowska A. Transcranial magnetic stimulation combined with physiotherapy in rehabilitation of poststroke hemiparesis: a randomized, double-blind, placebo-controlled study. Neurorehabilitation and neural repair; 26(9):1072-9, 2012.

• Stinear C.M., Barber P.A., Smale P.R., Coxon J.P., Fleming M.K., & Byblow W.D. Functional potential in chronic stroke patients depends on corticospinal tract integrity. Brain, 130(1), 170-180, 2007.

• Swayne O.B., Rothwell J.C., Ward N.S., & Greenwood R. J. Stages of motor output reorganization after hemispheric stroke suggested by longitudinal studies of cortical physiology. Cerebral Cortex, 18(8), 1909-1922, 2008.

• Takeuchi N. and Ikoma K. 1 Hz rTMS over unaffected hemisphere in stroke patients alters bilateral movements and coupling betweenmotor areas. Clinical Neurophysiology, vol. 121, supplement 1, p. s316, 2010.

• Takeuchi N. and Izumi S.I. Maladaptive plasticity for motor recovery after stroke: mechanisms and approaches, Neural Plasticity, Article ID 359728, 9 pages, 2012 b.

• Takeuchi N. and Izumi S.I. Noninvasive Brain Stimulation for Motor Recovery after Stroke: Mechanisms and Future Views. Stroke Research and treatment, Article ID 584727, 10 pages, 2012 a.

• Takeuchi N., Chuma T., Matsuo Y., Watanabe I., and Ikoma K. Repetitive transcranial magnetic stimulation of contralesional primarymotor cortex improves hand function after stroke. Stroke, vol. 36, no. 12, pp. 2681–2686, 2005.

• Takeuchi N., Tada T., Toshima M., Matsuo Y. & Ikoma K. Repetitive transcranial magnetic stimulation over bilateral hemispheres enhances motor function and training effect of paretic hand in patients after stroke. Journal of Rehabilitation Medicine, vol. 41, no. 13, pp. 1049–1054, 2009.

• Talelli P., Cheeran B.J., Teo J.T., Rothwell J.C. Pattern-specific role of the current orientation used to deliver Theta Burst Stimulation. Clinical Neurophysiology;118(8):1815e23, 2007.

• Talelli P., Greenwood R.J., and Rothwell J.C. Arm function after stroke: neurophysiological correlates and recovery mechanisms assessed by transcranial magnetic stimulation. Clinical Neurophysiology, vol. 117, no. 8, pp. 1641–1659, 2006.

• Terney D., Chaieb L., Moliadze V., Antal A. & Paulus W. Increasing human brain excitability by transcranial high-frequency random noise stimulation. J Neurosci;28(52):14147e55, 2008.

• Utz K.S., Dimova V., Oppenlander K. & Kerkhoff G. Electrified minds: transcranial direct current stimulation (tDCS) and galvanic vestibular stimulation (GVS) as methods of non-invasive brain stimulation in neuropsychology–a review of current data and future implications. Neuropsychologia 48, 2789–2810, 2010.

• Ward, N.S. & Cohen L.G. Mechanisms underlying recovery of motor function after stroke. Arch Neurol. 61(12): p. 1844-8, 2004.

• Ziemann U., Rothwell J.C. & Ridding M.C. Interaction between intracortical inhibition and facilitation in human motor cortex. J. Physiol. (Lond.) 496, 873–881, 1996.




DOI: https://doi.org/10.4449/aib.v152i4.3428

Refbacks

  • There are currently no refbacks.