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Abstract: The paper presents the utilization of low-resolution data for control purposes. 
The control is based on fuzzy logic, with the deployment of stochastic digital low-resolution 
time arrays. Every control decision contains a degree of imprecision, being derived from 
measured low-resolution data. The imprecision is eliminated by stochastic noise 
superimposed during the data gathering, while the negative effects of noise are suppressed 
both by the fuzzy nature of the decision-making process and by the energy inertia in the 
controlled object. The proposed stochastic fuzzy control is extremely fast, robust and so 
simple that it practically does not need a microprocessor. This approach is validated by a 
simulation of holding upright an inverse pendulum. 
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1 Introduction 
Fuzzy logic and fuzzy reasoning have been shown to be a very effective approach 
in various control applications, especially when the control problem is multi-
dimensional; when the plant model is unknown or time-varying; and/or when the 
feedback measured data are unreliable or unavailable [1]. In many control 
approaches, the measured feedback is extensively processed in order to eliminate 
measurement uncertainties and other errors, and such a processed feedback signal 
is used in the chosen control algorithm. Such processing of high-resolution data 
either puts further demands on processing capabilities or forces the reduction of 
the refresh rate of the controller output [2]. Hence, the utilization of accurate high-
resolution data may become unsuitable for the control of fast multi-variable 
processes. 
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Representing analogue variables by a time-array of 1-bit binary signals has been 
researched for various purposes. Direct-stream digital, based on sigma-delta 
modulation, is employed in audio-technology for sound recording, and pulse-
width modulation is widely used in power electronics, pulse position modulation, 
pulse density modulation, etc. All of these methods prove that it is possible to 
establish a strong correlation between an analogue value and a sufficiently long 
binary time array. Low-bit digital time arrays have also been researched in 
metrology and successfully utilized for fast low-resolution measurements [3], [4], 
[5], [6], [7], [8]. One of the key components is the introduction of stochastic 
dither, superimposed onto the input signal. Even 2-bit devices, with very coarse 
instantaneous measurements, will provide extremely accurate results [6]. In 
similar fashion, dither is utilised in [9] to enhance the quality of feedback signals 
for the fuzzy logic controller. The drawback is that high precision cannot be 
achieved by short time arrays of low-resolution data [3], [6], thus using such 
signals will lead to an imprecision in fast control decisions. However, a new 
control decision is arriving very soon. Can we use the ideas of making reliable 
overall systems from unreliable elements as proposed in [10] and utilise them to 
generate fast control decisions from imprecise low-resolution data, knowing that 
the control actions will, in time, converge to a stable state? 

Over the last several decades, fuzzy logic and fuzzy reasoning have been shown to 
work effectively with imprecise data ([6], [10]). How to combine the stochastic 
signal processing with fuzzy control? Papers of Zadeh [11] and Goodman et al. 
[12], [13], [14] show theoretical possibilities of connecting Boolean algebra, 
conditional algebra, stochastic concepts and fuzzy logic in complementary ways. 
For control applications, fuzzy logic operations that include comparison of two or 
more membership functions are needed. How to incorporate the stochastic 
dimension that is inherently carried by the low-resolution nature of the feedback 
signal? One possible method is α-cuts [3], [14], [15], [16], which are used to best 
represent a certain feature of a set, i.e. to form a relationship between fuzzy sets 
and crisp sets. The stochastic feature is ensured by employing a randomly varying 
level of α in every control cycle. In this way it is possible to generate binary time-
arrays, which can be compared in order to execute some fuzzy logic operations 
(for instance min, max operations). 

The contribution of this paper is to show that it is possible to realize a simple 
controller in which probability theory and fuzzy logic complement each other, as 
theoretically suggested in [11]. In this case, the classical binary logic is utilised in 
a spirit of fuzzy logic philosophy. The link between these two logics is provided 
by a novel combination of stochastic principles and α-cuts. The resulting 1-bit 
time arrays are processed by classical Boolean algebra, necessary for individual 
control decisions. This approach is suitable for some control applications and 
offers some groundwork ideas for further development. 

The proposed system differs from both classical fuzzy control and various 
improvements of fuzzy control [2], [9], [17]-[25]. A major aspect of difference is 
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the utilisation of very raw feedback signals for control. Although many control 
systems try to find the optimal output control signal in every decision cycle, the 
proposed system makes individual control decisions in such a way not to worsen 
the controlled variable. This means that we accept that the controlled object 
cannot be always brought to the required state within only a few control cycles - 
we are just driving it in an acceptable direction. Nevertheless, the overall control 
within a sufficient time interval converges towards an accurate control. 

The paper is organized as follows: Section 2 presents the theory of using the α-cut 
sets approach for control purposes; Section 3 discusses the fuzzy sets and 
utilization of low-resolution signals for control of the inverse pendulum in the 
upright position and shows the simulation results. 

2 α-cut Set as a Control Element 

2.1 Decomposition Principles – the Model for Obtaining a 
Stochastic Array from a Membership Function 

In classical fuzzy control, a membership function is an analogue value between 0 
and 1 [1]. In the stochastic approach proposed in this paper, this analogue value is 
substituted by a time array of 1-bit signals (zeroes and ones) in such a way that the 
analogue value representing the membership function is the probability of 
appearance of value 1 in the 1-bit time array. 

The model for obtaining such an array can be illustrated by the decomposition 
principle: An α-cut set is a discrete (crisp) set made up of members whose 
membership is greater than α [1], [3], [15], [16]: 

( ){ } )1,0[,| ∈>= ααμα xxA A  (1) 

Theoretically, the original continuous fuzzy set A can be decomposed into an 
infinite number of crisp α-cut sets. 

The fuzzy set can be represented as a union of discrete sets expressed as: 

[ ]1,0, ∈= αα α
α

AA ∪  (2) 

which means that the membership function is calculated using: 

( ) ( )[ ]xx AA α
α

χαμ ∧=
∈ )1,0[
sup  (3) 

where ( )xAαχ  is the characteristic function of the α-cut set αA . This function 

represents a crisp discrete set, and hence the value of the membership level is 1 for 
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all its elements. When, for a chosen value of α, intersection with function ( )xAαχ  

is calculated, function ααA is obtained. When ααA  functions for all α values 
from 0 to 1 are calculated and subjected to sup (finding the maximum) operation, 
a union operation is practically performed. In this way the original fuzzy set can 
be constructed. 

In a similar fashion, it is possible to determine the membership function to a fuzzy 
set for individual elements if there is a finite number N of α-cut sets (N is also the 
number of samples of the feedback signal), but such that α is a random number of 
uniform probability distribution in the interval 0 to 1 ([11], [12], [13], [14]). 

( ) ( ) )1,0[,1lim
1

∈=∑
=

∞→
αμχ

α
xx

N A

N

i
iAN

 (4) 

This means that the characteristic function ( )xAαχ  can be considered as a random 

variable, which assumes value 1 with probability ( )xAμ , otherwise it assumes 
value 0. When α is lower than ( )xAμ , then ( ) 1=xAαχ . 

( ) ( )
( )⎩

⎨
⎧

≥
<

=
x
x

x
A

A
A μα

μα
χ

α 0
1

 (5) 

Let us assume that instead of a fuzzy set there is an array of α-cut sets of the fuzzy 
set, such that α is a random variable with a uniform distribution )1,0[∈α . 
Depending on the value of α, one element can be a member of an α-cut set or it 
can be outside the α-cut set, thus giving the required time array of zeroes and 
ones. 

Signals obtained by low-bit quantization carry two pieces of information – the 
accurate value and the random error. The accurate value is extracted as an average 
of the array. The random error cannot be determined in every element of the array, 
but the random error for a whole array can be estimated ([5], [6], [7], [8], [26], 
[27]). 

2.2 Comparison of Low-Resolution Signals – Minimum, 
Maximum, AND, OR Operations 

In control systems of “if-then” type, the “if” part of the rule is formed from the 
membership functions of the input variables. The conditions and rules are formed 
in a shape of a logic expression, which contains the membership functions of the 
input variables [1]. If the input variables, at every digital tact cycle, can assume 
values of 1 and 0 only, then various operations on those variables can be executed 
within one cycle – extremely fast. 
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The actual elements of n input stochastic signal arrays can be considered as 
random variables, which assume value 1 with probabilities p1, p2, ..., pn. If those 
random variables are uncorrelated, classical AND, OR, NAND NOR logic 
operations can be performed. However, any correlation between variables will 
change the meaning of logic operations. 

It is possible to form logic terms from the elements of stochastic arrays. Knowing 
the probability of assuming the value of 1 in individual stochastic arrays and 
whether the variables are correlated or not, it is possible to determine the 
probability of the logic term output assuming the value of 1. In this way, the 
output stochastic array of similar properties as the two input arrays is obtained. 

If the input arrays are uncorrelated, classical logic operations are valid. However, 
if every input variable is compared with the same α value of the α-cut set, the 
resulting operations become minimum, maximum or difference operations. 

2.2.1 Uncorrelated Random Variables 

Let us consider two input variables and at least two fuzzy sets. The membership 
function of the first input variable to the first fuzzy set is ( )xAμ , while the 
membership function of the second input variable to the second fuzzy set is 

( )ωμB  where 1)(),(0 ≤≤ ωμμ BA x ; 1α  and 2α  are independent random 
variables of uniform probability distribution 1,0 21 ≤≤ αα , utilised for 
determining the α-cut sets of the corresponding fuzzy sets. 

2.3 Logic Operations on Corresponding Elements of the 
Arrays which Describe Membership Functions ( )xAμ  and 

( )ωμB  

Based on the α-cut set models, an event belongs to the α-cut set if )(1 xAμα < , 
while if )(1 xAμα ≥  the event doesn’t belong. ( 1Ψ  is the actual element of the 
first stochastic array). Event 11 =Ψ  has the probability ( ) 11 1 α==ΨP , while 
the probability of the event 01 =Ψ  is ( ) 11 10 α−==ΨP . Similarly, the second 
array has features ( ) 22 1 α==ΨP  and ( ) 22 10 α−==ΨP . 

If the input variables are uncorrelated, the probabilities of possible combined 
events are: 

( ) 2121 1,1 αα ⋅==Ψ=ΨP  (6) 

( ) ( )2121 10,1 αα −⋅==Ψ=ΨP  (7) 
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( ) ( ) 2121 11,0 αα ⋅−==Ψ=ΨP  (8) 

( ) ( ) ( )2121 110,0 αα −⋅−==Ψ=ΨP  (9) 

If the four above expressions are added, their combined probability equals 1, 
confirming that a complete field of possible events is described. 

Equation (6) represents AND operation, while the combination of (7), (8) and (9) 
represents OR operation. 

2.3.1 Minimum and Maximum Operations 

Let us consider two membership functions ( )xAμ  and ( )ωμB  and assume 
( ) ( )ωμμ BA x > . If those two signals are compared with the same random 

number α , the following states can be obtained: 

( ) ( ) αωμαμ >∧> BA x  (10) 

( ) ( ) αωμαμ <∧> BA x  (11) 

( ) ( ) αωμαμ <∧< BA x  (12) 

but the event 

( ) ( ) αωμαμ >∧< BA x  (13) 

is an impossible event. 

Performing logic AND operation on such random variables, the lowest value of 
membership functions can be obtained, since all membership functions can be 
greater than α if the lowest function is greater than α. The output array is 
equivalent to the array of lowest membership function, 

( )( ) ( )( )αμαωμ >⇒> xAB  (14) 

The minimum operation on the two membership functions is performed by AND 
logic operation: 

( ) ( )( ) ( ) ( )ωμμωμμ BABA xx ∧=,min  (15) 

By OR operation the largest of the two compared membership functions are 
chosen. Consequently, if one the largest membership function is greater than the 
random number α, then at least one of the compared functions is larger than α. 

The maximum operation is performed by the logic OR operation: 

( ) ( )( ) ( ) ( )ωμμωμμ BABA xx ∨=,max  (16) 

It is also possible to calculate the difference between two membership functions: 
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( ) ( ) ( ) ( )ωμμωμμ BABA xx ∧=−  (17) 

Proof: for 

( )
( ) ( )

( ) 11
01
00

=Ψ=Ψ<
=Ψ=Ψ>>
=Ψ=Ψ>

BAB

BABA

BAA

x
x

ωμα
ωμαμ

μα
 (18) 

The purpose of the above MIN, MAX and DIF operations is to reduce the amount 
of calculations on stochastic arrays so that very simple logic circuits can be used 
instead of a microprocessor. This will enormously increase the speed of sampling 
and processing, resulting in the possibility that the control output is being updated 
in every processor cycle. 

2.3.2 Choosing the Membership Functions to Fuzzy Sets in the Form of 
Stochastic Arrays 

Let us consider an arbitrary trapezoidal shaped fuzzy set and the random number α 
(dashed line), Figure 2 [1], [28]. 

 
Figure 2 

A trapezoidal fuzzy set and the random number α 

The input variable x belongs to the α-cut set if: ( ) αμ >xA . In order to determine 
the α-cut set interval of the input variable, it is necessary to determine in which 
part of the membership function the input variable is greater than the random 
variable α. The intersection points are determined as: 

( )abax
ab
ax

−+=⇒
−
−

= αα  (19) 

( )cddx
cd
xd

−−=⇒
−
−

= αα  (20) 

Therefore, the condition for belonging to an α-cut set is: 

( )[ ] ( )[ ]cddxxaba −−<∧<−+ αα  (21) 
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This can be rearranged as: 

( ) ( ) dcdxabxa <−+∧−−< αα  (22) 

i.e. 

( ) ( )
2222

cdcdcdxababxab +
<

−
−−+∧

−
+−−<

+ αα  (23) 

As α is a random number between 0 and 1, terms ( )ab −α  and ( )cd −α  are 
random numbers of uniform distribution. 

When the sum of the measured variable and a random number is compared with a 
decision trigger level, this is a process very similar to the stochastic additive A/D 
conversion against decision levels 1PO  and 2PO  ([5], [6], [7], [8]). If the 
random dithers ( )th1  and ( )th2  are added to the measured analogue signal x, then 
the digitizing process is defined by: 

( ) ( ) 2211 POthxthxPO <+∧−<  (24) 

( ) ( )
21

ababth −
−−= α  (25) 

( ) ( )
22

cdcdth −
−−= α  (26) 

As in this case ( ) ( )cdab −=− , it follows that ( ) ( ) ( )ththth == 21 . 

3 Utilization of Low-Resolution Signals for Control 

To illustrate the feasibility of the proposed control system, the classic example of 
holding the inverse pendulum in the upright position was chosen. Similarly, [2], 
[9], [17] – [25] use the inverse pendulum in order to validate their proposed fuzzy 
controllers. 

The authors have investigated a practical application of the proposed stochastic 
fuzzy control system for the very fast and accurate control of arc welding. In such 
applications, problems with fast-changing plant parameters and the presence of 
very high levels of noise are pronounced. On the other hand, actuation is very fast: 
the PWM modulation of welding current is performed by transistors operating in 
switching mode at frequencies up to 100 kHz. Such requirements can be met by 
the proposed low-resolution control system. The practical implementation that is 
under development employs analogue summation of analogue dither and analogue 
measurement signal, followed by 1-bit digitalization. 
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3.1 The Control Problem of Inverse Pendulum 

The simplest one degree-of-freedom (DOF) inverse pendulum system on a trolley, 
shown in Figure 3, is considered. The actuator is either a single-level or multiple-
level impulse actuator, acting in bidirectional bang-bang mode, which may be 
described as push/do_nothing/pull (F+, 0, F-) type action,. In order to control the 
pendulum, it is necessary to monitor/measure and control two variables: θ - the 
angle of the pendulum from the vertical axis and ω - the angular velocity of the 
pendulum, similarly to [9]. 

 
Figure 3 

Illustration of the inverse pendulum with one DOF 

3.2 Control Utilising One-Level Actuator 

The first control system is designed for an actuator which has only one level of 
possible output in each direction - single level bidirectional bang-bang. The 
control system operates at a higher frequency, in order to accomplish the control 
task with a moderate actuator force, even in cases of unfavourable initial 
conditions or strong disturbances. 

3.2.1 Definitions of Fuzzy Sets and Membership Functions 

As both measured variables are single-dimensional, the fuzzy sets can be defined 
as both fuzzy numbers and fuzzy intervals. Three fuzzy sets ("negative", "zero" 
and "positive") are chosen within the measured angle interval, but with triangular 
rather than trapezoidal membership functions. Hence values b and c from Figure 2 
are identical, b=c. Furthermore, the target value for the control system in this case 
is the vertical position, i.e. zero, thus θ b=θ c=0. In such a case, the membership 
functions for the pendulum angle control are defined as follows: 

For negative angle NNΘ ,  ( )
⎪
⎩

⎪
⎨

⎧

≥

<<

≤

=Θ

00

0

1

θ

θθ
θ
θ

θθ

θμ

if

aif
a

aif

NN
 (27) 
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For "zero" angle ZZΘ ,    ( )

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

≥

<<
−

≤<
−

≤

=Θ

dif

dif
d

d

aif
a

a
aif

ZZ

θθ

θθ
θ

θθ

θθ
θ

θθ
θθ

θμ

0

0

0

0

 (28) 

For positive angle PPΘ ,  ( )
⎪
⎩

⎪
⎨

⎧

≥

<<
−

≤

=Θ

dif

dif
d

d
if

PP

θθ

θθ
θ

θθ
θ

θμ

1

0

00

 (29) 

These membership functions are shown in Figure 4: 

 
Figure 4 

Fuzzy sets of the pendulum angle 

The fuzzy sets and the membership functions for the control of angular velocity 
are defined in the same way; only the lower threshold velocity is denoted ωa and 
the upper threshold is denoted ωd. With the identical control target of resting 
(zero velocity) in the upright position, equations for negative, "zero" and positive 
angular velocity ( NNΩ , ZZΩ  and PPΩ  respectively), are similar to (27)-(29), and 
the membership functions are as shown in Figure 5. 

 
Figure 5 

Fuzzy sets of pendulum angular velocity 
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3.2.2 Fuzzy Rules for One-Level Actuator 

The control problem of holding the inverse pendulum upright is defined by rules 
of fuzzy decision as follows: 

R1:  If     θ > 0    and    ω > 0,  then   F = F+ , 
R2:  If     θ > 0    and    ω = 0,  then   F = F+ , 
R3:  If     θ > 0    and    ω < 0,  then   F = 0 , 
R4:  If     θ = 0    and    ω > 0, then   F = F+ , 
R5:        If      θ = 0            and    ω = 0,        then   F = 0 , (30) 
R6:  If     θ = 0    and    ω < 0,  then   F = F- , 
R7:  If     θ < 0    and    ω > 0, then   F = 0 , 
R8:  If     θ < 0    and    ω = 0,  then   F = F-_, 
R9:  If     θ < 0    and    ω < 0,  then   F = F-_. 

where: F-_ is the constant force in negative direction and F+ is the constant force in 
positive direction. 

On the basis of the above fuzzy logic rules, the logic circuit with only 12 logic 
gates, shown in Figure 6, can be constructed. 

 
Figure 6 

Arithmetic-logic scheme of fuzzy control for a single-level actuator 

3.2.3 Simulation Results of the Control Utilizing One-Level Actuator 

The above fuzzy rules have been faithfully modelled into a simulation of the 
inverse pendulum system. Although such simple control hardware can be 
extremely fast, a very moderate frequency of 1 kHz has been chosen for the 
simulations. The physical parameters are: trolley mass M=1 kg, pendulum mass 
m=0.1 kg, pendulum height h=1 m, available actuator force F= ±16 N. 

The results of the first two seconds of bringing out-of-balance pendulum into a 
stable upright position are shown in Figure 7. The initial conditions are quite 
challenging: the pendulum is 0.3 radians out of balance, falling further with 0.4 
rad/s angular velocity. 
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a) angle and angular velocity during the simulation 

 
b) b) actuator force during the simulation 

Figure 7 
Aligning the inverse pendulum into the upright position, sampling 1 kHz, 16N actuator 

The simulated values of the pendulum angle and its angular velocity are shown in 
Figure 7a, and it can be seen that the control system is very effective. It stops the 
pendulum falling further after less than 0.1 seconds (angular velocity becoming 
negative), brings it very close to the upright position in less than 1.5 seconds 
without overshooting, and keeps it stable afterwards. The actuator force, shown in 
Figure 7b, displays a lot of activity in the first 0.35 s, then moderate activity for 
the next second, and then is required to act just occasionally afterwards. The 
stochastic nature of the controller can be observed, at around 1.83 seconds, and 
although the pendulum is upright and not moving away, there is one positive 
impulse and then immediately one negative impulse of the actuator. This is a 
waste of energy: two burst were applied when none was really needed. 
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a) angle and angular velocity during the simulation 

 

b) actuator force during the simulation 

Figure 8 
Aligning the inverse pendulum into the upright position, sampling 100 Hz 

The required force impulses are further investigated in 10 simulation runs; with 
identical initial conditions, the stochastic nature of the controller makes every 
simulation slightly different. Overall, only around 60% of the actuator force 
output is used for lifting the pendulum from unbalanced to the upright position, 
while around 40% of the actions is wasted due to the stochastic nature of the 
controller. 

The effects of reducing the sampling frequency were investigated next. Figure 8 
shows the position and the angular velocity for the sampling frequency of 100 Hz, 
with an original actuator force of 16 N. It can be seen that the system is still 
performing well, converging to a near upright position within less than 2 seconds 
and holding it upright afterwards. However, higher fluctuations of angular 
velocity can be observed in a steady state. These fluctuations are more pronounced 
because the duration of every actuator action is 10 times longer, and the energy 
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inserted during one control cycle is now 10 times larger. Further reductions in 
operating frequency further increases velocity fluctuations, thus compromising the 
accuracy of tracking and eventually would result in an unstable system. 

3.2.4 Comparison with High-Resolution Fuzzy Control 

A wide comparison of the proposed control approach based on low-resolution 
(LR) data against the fuzzy control based on high-resolution (HR) data has been 
performed. Many simulations runs have been performed, at different sampling 
frequencies and with different actuator forces. Following on from the discussion 
in the previous paragraph, the expected deviations in velocity response increase 
with a reduction in sampling frequency; therefore the results at 100 Hz are shown 
in Figure 9. Responses of the pendulum angle and its angular velocity obtained 
with the HR control system are depicted in bold lines, while the thin lines are 
responses of the proposed LR stochastic fuzzy controller, for three randomly 
chosen simulation runs. 

It is interesting to note that simulation runs of the LR control differ from each 
other, due to the stochastic dither. This confirms our initial idea that individual 
control decisions do not need to be always the best in every time instant, but the 
proposed control method will provide the overall convergence of the controlled 
plant towards the required state. 

 
Figure 9  

Comparison of high-resolution and low-resolution (3 simulation runs) control, sampling 100 Hz 

3.3 Control Utilising a Three-Level Actuator 

From the results shown in Section 2.3.2, as well as from many conducted 
simulations with different sampling frequencies and/or actuator force levels, a 
collision of three features can be observed: 



Acta Polytechnica Hungarica Vol. 9, No. 6, 2012 

 – 43 – 

-  a low control sampling rate is beneficial for the reduction of imprecision in 
individual control decisions, but it increases the fluctuations around the steady-
state position, 

-  a lower actuator force is good for minimising the total force impulses but it 
limits the maximum system capabilities, 

-  aggregate force input increases with both too high and too low control sampling 
rates. 

In order to optimise, rather than compromise between sampling frequency, 
tracking accuracy, actuator available force and energy efficiency, a three-level 
actuator is implemented. The actuator output force has three digital levels (low, 
medium, high), in two directions, so that it can assume seven possible levels. 

The control strategy is adapted so that it operates in two modes of control: 

1) fine control, when both angular position and angular velocity are within their 
threshold limits, or 

2) forceful control, when at least one of the controlled variables is outside the 
threshold limits. 

The fuzzy rules are adapted so that only the low-level force is applied in the fine 
control mode, while medium and high force levels can be applied in the forceful 
control mode. 

3.3.1 Definitions of Fuzzy Sets and Membership Functions 

The three fuzzy sets for the forceful angle control are identical as before, as given 
by (27)-(29) and shown in Figure 4. When the angle is within the fine regulation 
thresholds, ( )dfaf θθθ ,∈ , then the three fuzzy sets for fine regulation are 
negative fine angle NΘ , "zero" fine angle ZΘ and positive fine angle PΘ . All 
six fuzzy membership functions are shown in Figure 10. 

Using an equivalent approach, the fuzzy sets for angular velocity control are 
defined for forceful control and for fine control, as shown in Figure 11. 

 
Figure 10 

Fuzzy sets of the pendulum angle for forceful/fine control 
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Figure 11 

Fuzzy sets of pendulum angular velocity 

3.3.2 Fuzzy Rules for a Three-Level Actuator 

The rules of fuzzy decision are defined as follows: 

In the fine control mode, when ( )dfaf θθθ ,∈  and ( )dfaf ωωω ,∈ , fuzzy rules 
are: 
R11:  If    θ>0     and    ω>0,    then  F= + low , 
R12:  If    θ>0     and    ω=0,    then  F= + low , 
R13:  If    θ>0     and    ω<0,    then  F= 0 , 
R14:  If    θ=0     and    ω>0,   then  F= + low , 
R15:     If    θ=0      and    ω=0,         then  F= 0 , (31) 
R16:  If    θ=0     and    ω<0,    then  F= - low , 
R17:  If    θ<0     and    ω>0,   then  F= 0 ,  
R18:  If    θ<0     and    ω=0,    then  F= - low , 
R19:  If    θ<0     and    ω<0,    then  F= - low . 

Otherwise, forceful control is performed, using the following membership 
functions: 
R21:  If    θ>>0    and    ω>>0,    then  F= + high , 
R22:  If    θ>>0    and    ω=0,    then  F= + medium , 
R23:  If    θ>>0    and    ω<<0,    then  F= 0 , 
R24:  If    θ=0      and    ω>>0,   then  F=+ medium , 
R25:      If    θ=0      and    ω=0,        then  F=0 , (32) 
R26:  If    θ=0      and    ω<<0,    then  F= - medium , 
R27:  If    θ<<0    and    ω>>0,   then  F= 0 , 
R28:  If    θ<<0    and    ω=0,    then  F= - medium , 
R29:  If    θ<<0    and    ω<<0,    then  F= - high . 

3.3.3 Simulation Results for a Three-Level Actuator 

Simulations have been conducted for the data as in section 3.2.3, except the 
following: 

- the three levels of actuator force are chosen as high=16 N, medium = 8 N and 
low = 4 N, 
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- the thresholds values for fine control are θ af= -θ df = 0.2 rad and 
dfaf ωω −=  = 0.8 rad/s 

- the sampling frequency is set to 100 Hz. 

A sample of simulation results is shown in Figure 12: the pendulum angle and 
angular velocity (Fig. 12a) converge to a steady upright position within 1.5 
seconds, with very small tracking errors after that time. The actuator force (Fig. 
12b) displays very little activity once the control system enters the fine control 
mode. The benefit of this is that the overall actuator output (energy requirement) 
is around 3 times lower than in the case of single-level actuator with 100 Hz 
sampling, Figure 8. 

 
a) angle and angular velocity during the simulation 

 
b) actuator force during the simulation 

Figure 12 
Aligning the inverse pendulum into the upright position, 100 Hz sampling, 16/8/4 N actuator 
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Conclusions 

The paper shows the possibility to construct a stochastic fuzzy control system that 
utilizes low-resolution signals. The method for decomposing a fuzzy set into a 
time array of stochastic α-cut sets, which enables representation of the fuzzy 
membership function by a stochastic array of zeroes and ones, is practically 
implemented. This is a way of combining the probability theory with fuzzy logic, 
in a complementary manner. 

For any fuzzy set, α-cut sets can be uncorrelated and then classical logic 
operations can be applied. Otherwise, it is possible to determine an α-cut set of all 
fuzzy sets for the same value of α and then utilize MIN and MAX logic 
operations. In this way, fuzzy rules of if-then type are transformed into logic 
expressions. As a result, control is reduced to determining the output values of 
these logic expressions. In MIN and MAX operations, one of the input variables is 
passed as an output. Hence features of one input are mirrored to the output; in this 
way the character of the random error in the input variable is unchanged. During 
the feedback measurement process, i.e. while gathering the input data for the 
controller, the chosen α value is introduced as a random error. The same error is 
reflected in every instantaneous control decision, but the error is sufficiently 
suppressed after an array of control decisions is made. In essence, the proposed 
control procedure follows a novel philosophy. Within every cycle the procedure 
is: dithering, coarse digitalization, making rough (inaccurate) control decisions, 
execution of those control actions. If this cycle is repeated in a very fast manner, 
the overall control errors will not exist. 

The resulting control system is very simple and robust; it doesn’t perform 
complex mathematical operations and can operate without a microprocessor; and 
it can very quickly make an array of control decisions. The effectiveness of a 
stochastic fuzzy control approach is validated by simulation. 
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