
Acta Polytechnica Hungarica Vol. 11, No. 4, 2014

 – 139 –

Design and Implementation of Differential

Evolution Algorithm on FPGA for Double-

Precision Floating-Point Representation

Prometeo Cortés-Antonio
1
, Josue Rangel-González

1
, Luis A.

Villa-Vargas
1
, Marco Antonio Ramírez-Salinas

1
, Herón Molina-

Lozano
1
, Ildar Batyrshin

2

1
National Polytechnic Institute, Center for Computing Research, México City,

México; acorteoa09@sagitario.cic.ipn.mx, joshuab09@sagitario.cic.ipn.mx,

lvilla@cic.ipn.mx, mars@cic.ipn.mx, hmolina@cic.ipn.mx

2
Mexican Petroleum Institute, Eje Central Lázaro Cárdenas Norte 152, Col. San

Bartolo Atepehuacan, Mexico, D.F., C.P. 07730, Mexico; batyr@imp.mx

Abstract: The paper presents the results of implementation of differential evolution

algorithm on FPGA using floating point representation with double precision useful in real

numeric problems. Verilog Hardware Description Language (HDL) was used for Altera

hardware design. Schematics of the modules of differential evolution algorithm are

presented. The performance of the design is evaluated through six different functions

problems implemented in hardware.

Keywords: FPGA; Differential Evolution Algorithm; floating point

1 Introduction

Metaheuristic optimization algorithms such as Genetic Algorithms, Estimation of

Distribution Algorithms, Differential Evolution Algorithms, Particle Swarm

Optimization, Ant Colony Optimization etc. have been widely accepted in

engineering, economics and biotechnology optimization problems because they

are derivative free optimization methods that can be used for optimization of

complex functions [1, 2].

Implementation of the Differential Evolution Algorithm (DEA) on software has

been used in applications such as [3-10], where an optimization of parametric

model is carried out in conventional computer equipment. However the

applications where optimization is necessary in runtime, for example in online

learning [11-13] and remote access [14, 15], require that DEA to be implemented

P. Cortés-Antonio et al. Design and Implementation of Differential Evolution Algorithm on FPGA
 for Double-Precision Floating-Point Representation

 – 140 –

in embedded systems such as FPGA device using evolvable hardware approach

[16-18].

Several proposals for hardware implementation of evolutionary algorithms have

been realized, such as Micro Algorithm [19-23] and Compact Genetic Algorithm

(cGA) [24-28] with the aim of low resource consumption and minimal response

time implementation. These algorithms lose the generality of solving problems of

any kind, however such deployments have had success in combinatorial problems.

However as it is shown in [29], cGA not always show good performance in

solving nonlinear problems, and also complex linear problems. Furthermore if one

considers the implementation of cGA presented in [30], where the probability

vector is implemented using 8-bit integers, it is also clear that this implementation

is limited by solution of only trivial problems.

It was shown in the seminal paper on Differential Evolution Algorithm [31] that

this algorithm is very simple using only three evolutionary parameters and basic

operations such as addition, subtraction, comparison, and its performance is

comparable or even surpasses other evolutionary or heuristic algorithms.

However, due to DEA used real value representation of variables and its

operations are performed in floating point its hardware (FPGA) implementation in

the time when this algorithm was published was not possible because FPGA in

that time did not have the necessary resources for such implementations.

Nowadays FPGA families have amazing abilities that make the implementation of

such algorithms not only feasible, but also an excellent choice for designing

evolutionary algorithms.

There are several design proposals for implementing evolutionary algorithms

ranging from a dedicated system on only one chip until a cluster of FPGAs [32,

33] to perform concurrent computation, that can be useful for different

applications.

The paper presents the design on EP4CE115F29C7 Altera FPGA device [34] for a

Differential Evolution Algorithm with a number of function variables from 4 until

32 and population size from 16 to 128 using double-precision floating point

representation. This work is divided into six sections. The next section gives

theoretical bases of Differential Evolution Algorithms. A brief introduction to the

Altera FPGA logic design is presented in Section 3. Section 4 presents the

proposed design of the DEA showing schematics of each block that makes up the

system. The results of resource consumption and latency time of the

implementation are given in Section 5. Section 6 presents the conclusions and

directions of future work.

Acta Polytechnica Hungarica Vol. 11, No. 4, 2014

 – 141 –

2 Differential Evolution Algorithm

Differential Evolution Algorithm (DEA) belongs to the family of evolutionary

algorithms, which has as aim to find the global optimum of a function over

continuous space. In particular, and without loss of generality, this problem can be

reduced to finding the minimum of a function:

 (1)

Where x is a n-dimensional vector and f is a real function of real valued

arguments. DEA, proposed in [31], is an evolutionary algorithm that requires only

three parameters CR (defining crossover and mutation operations that are

mutually exclusive), F (scaling factor of the difference of two individuals) and NP

(population size) to generate the evolutionary process for n-dimensional problem.

Differential Evolution Algorithm can be represented by a four-step process as

shown in Fig. 1. Only the first step is performed once, the other steps are

performed while an iterative process does not terminated by stop criteria.

Figure 1

Bock diagram of Differential Evolution Algorithm

Complete pseudo-code is presented in Fig. 2, where the first 12 lines perform the

block of generation and fitness evaluation of the initial population shown in Fig. 1,

for dimensionality D and population size NP.

The algorithm contains three nested loops, where the outer loop is used to specify

the stop condition, in this particular case it is determined by the parameter

Gmax(number of generations) but one can set other stop conditions such as

minimum error or difference between sequential errors, etc.

Generation and fitness evaluation
of the initial population

Test Vector Generation

Crossover/Mutation Operator

Selection Operator

P. Cortés-Antonio et al. Design and Implementation of Differential Evolution Algorithm on FPGA
 for Double-Precision Floating-Point Representation

 – 142 –

The inner cycle indicates that for each individual in a generation with the

probability defined by the parameter CR it is generated a new individual from

three individuals chosen randomly, with indexes r1, r2 and r3, using scale factor F,

as described in line 21 of the algorithm. This cycle can be considered as a

combination of crossover and mutation operations [31].

1 Begin

2
3
4
5 do

6

 [] (

)

7
8
9
10
11 (

)

12
13
14
15

16 []
17
18 []
19
20 []
21

 (

)

22

23

24
25
26

27
28

 ((

) (

))

29

30

31

32
33
34
35 End

Figure 2

Pseudocode of Differential Evolution Algorithm

Acta Polytechnica Hungarica Vol. 11, No. 4, 2014

 – 143 –

3 FPGA Device

The FPGA (Field-Programable Gate Array) is a device that is used to design a

dedicated digital system or embedded platforms that perform specific tasks in a

system. Its main characteristic is that it can be programmed several times, even

after the system has been installed or finished to update its functionality. For this

reason this device is very useful in evolved applications with dynamic

environments.

Currently, FPGA has been used widely in several real applications of evolvable

hardware, an emerging research area where intelligent computation techniques are

implemented in digital system design that can be adaptive to environment

changes, manage big data and process the information using intelligent

techniques.

Altera FPGA [35] is a device consisted of programmable logic blocks (Logic

Elements), and memory elements (Dedicated Logic Registers), which are

interconnected to perform complex combinational and sequential functions. In

addition it can contain specific resources such as embedded multipliers, SRAM,

transceiver, or even hard intellectual propriety (IP) block and embedded

processors for implementing SoC design. FPGA based system is implemented

through modules describing basic digital logic circuits such as multiplexers,

comparators, adders, registers, memory, and finite state machines use hardware

description languages to perform specific and complex system tasks.

Altera provides a free library of parameterized intellectual property (IP) blocks

called Megafunctions [36, 37]. The floating point Megafuctions implement

hardware modules for performing customized floating point operations. Table 1

shows the resources used to perform the floating point arithmetic operations in

Differential Evolution Algorithm implementation on EP4CE115F29C7 device for

double precision floating point representation.

Table 1

Characteristics of tree floating point Altera Megafunction

MegafunctionN

ame

Output

Latency

Logic

Elements

Logic

Registers

Embedded

multiplier
FMAX

(MHz)

 FPMULT 5 552 530 18 102

FPCOMP 1 176 2 - -

FPAddSub 7 1534 584 - 105

Differential evolution algorithm performs floating point operations only for

generating the offspring individuals in mutation and crossover process; hence it

needs only one module for floating point. Moreover, it is important to see that

FPCOMP is a combinatorial module; because of the floating point comparator is

the same that integer comparator. The complete hardware implementation of DEA

is described in the next section.

P. Cortés-Antonio et al. Design and Implementation of Differential Evolution Algorithm on FPGA
 for Double-Precision Floating-Point Representation

 – 144 –

4 Hardware Implementation of Differential

Evolution Algorithm

The schematic hardware implementation of DEA consists of the following

modules: i) PMem module to store individuals, ii) FXMem to store fitness

function values, iii) fitness function module, iv) CrossOvermodule, v) four

Random Number Generators and vi) Finite State Machine module to control the

execution sequence of DEA. Fig. 3 presents all modules except of Finite State

Machine module that controls all modules of the system. Fig. 3 depicts also the

following registers: i,j,for addressing PMem and FXMem, three registers for

storing indexes, three 64-bits registers for storing the values of Xr1, Xr2 and

Xr3attributes and a file register with D64-bits register for storing each attribute of

offspring individual. Also some multiplexors and comparators are used that are

not presented due to simplicity of the scheme. In the following the more detailed

description of the modules will be given.

Figure 3

Complete hardware implementation of Differential Evolution Algorithm

4.1 Memories Modules

4.1.1 PMem Module

This module is implemented by using a RAM circuit for storing the population of

current generation. Memory size is determined by population size parameter NP,

and dimensionality D, the RAM size can be expressed as follows:

 [] (2)

If each word is specified by 8 bytes (64 bits), then the PMem size expressed in

bytes is specified as follows:

 [] (3)

Acta Polytechnica Hungarica Vol. 11, No. 4, 2014

 – 145 –

4.1.2 FXMem Module

This module is implemented similarly to PMem with the difference that FXMem

size is determined only by NP parameter, due to only one value is stored by

individual. The expressions for FXMem[TAM] are:

 [] (4)

 [] (5)

Fig. 4a shows the block diagram of RAM specifying all control pin.

a) Memory b) Random Number generator

Figure 4

Schemes of general memory modules and Random Number Generator of 4 cells

4.2 Random Number Generator (RNG)

Cellular Automata(CA) circuits have been used to create random numbers. The

corresponding module works with two rules[38] where the first one is defined

by: and the second one is defined by:
 , where represents the next state of the i-cell,

 represents the current state of the (i-1)-cell (left neighbor),
represents the current state of the i-cell, and is the current state of the

(i+1)-cell (right neighbor). An n-CA can generate 2
m
-1 different pseudo random

numbers where m is a number of the cells. The scheme for m = 4 is presented in

Fig. 4b.

Implementation of DEA contains 3 different modules for generating integer values

in intervals [0-NP], [0-D], [0-127] and one module for generating floating point

values.

For design of a comparator with parameter CR taking values in interval [0,1]

instead of floating point representation of parameter values it is used a digital

representation in interval [0-127] by means of 7 cells of CA.

For floating point number generator used for generation of values of individuals.

X Y

Addr

wrE

D Q

𝑥

𝑥

𝑥

𝑥

D Q D Q D Q

P. Cortés-Antonio et al. Design and Implementation of Differential Evolution Algorithm on FPGA
 for Double-Precision Floating-Point Representation

 – 146 –

x

x

4.3 Crossover Module

To implement the pseudo code shown in Fig. 2, line 21:

 (

)

where

 are floating point values,the following three binary

floating point operations have been used:

 (

)

This sequence of operations is implemented using FPMult and FPAddSub

Megafuntions shown in Table 1. Therefore for a complete crossover operation be

performed, it should run 22 clock cycles. Fig. 5 shows scheme of Crossover

module.

a) Crossover module. Stage 1 b) Crossover module. Stage 2

Figure 5

CrossOver module implementations

4.4 Fitness Module

Fitness evaluation modules are dependent from specific applications therefore this

modules are the only components that change from one application to another. In

this paper we implement a set of six different benchmark mathematical functions

traditionally used for evaluation of performance of metaheuristic algorithms

(Table 2). The block diagram implementations of these functions are shown in

Fig. 6.

 []

Y

Acta Polytechnica Hungarica Vol. 11, No. 4, 2014

 – 147 –

Table 2

Benchmark mathematical functions

 Function Ecuation

1

.

1

Sphere Mode ∑

2
Schwefel’s Problem 2.22

 ∑| | ∏| |

3
Schwefel’s Problem 1.2

 ∑(∑

)

4 Schwefel’s Problem 2.21 {| | }

5

Generalized Rosenbrock’s

Function

 ∑|
 |

6
Step Function

 ∑| |

a) b)

c) d)

Figure 6.1

Fitness Functions Implementations

𝐴𝐶

 X Y
𝑋𝑖 𝑗 𝑓 𝑥

𝑋𝑖 𝑗

 𝐴𝐶

 X
 Y

𝐴𝐶
𝑓 𝑥

𝐴𝐶

 X

 Y
𝑋𝑖 𝑗

𝑋𝑎𝑏𝑠

𝐴𝐶

𝑓 𝑥 𝑀𝑎𝑥
L

 X

 Y

𝑋𝑖 𝑗 𝑋𝑎𝑏𝑠 >
𝑓 𝑥

P. Cortés-Antonio et al. Design and Implementation of Differential Evolution Algorithm on FPGA
 for Double-Precision Floating-Point Representation

 – 148 –

e)

f)

Figure 6.2

Fitness Functions Implementations

4.5 Control Module

Each one of the considered modules contains a control inputs for deciding when to

write or to read values on the register and which elements should be selected for a

specific input. Control signals are managed by a control unit that performs the

correct functionality of algorithm.

5 Results

Results presented in Table 3 show the resources consumed in the implementation

of DEA with spherical objective function (f1) with NP=128 and W= 32 parameter

values on EP4CE115F29C7 device of Cyclone IV E Altera Family. The Results

column presents both the resources used in the implementation vs. the total

available resources used by the device for different categories of resources. The

column f1 of Table 4 shows what part of resources of Table 3 consumed by

function f1. Total resources consumed in implementation of other benchmark

functions used for evaluation of DEA performance also can be found in Table 4.

𝑓 𝑥

d

 X

 Y

𝑋𝑖 𝑗

𝐴𝐶

𝐷𝑒𝑙𝑎𝑦

𝑥𝑖 𝑥𝑖
 𝑥𝑖 𝑥𝑖

1 𝐷𝑒𝑙𝑎𝑦
 𝑎𝑏𝑠

 𝑥𝑖

𝐴𝐶 X
 Y

𝑋𝑖 𝑗

 0.5
𝑎𝑏𝑠

𝑓 𝑥

d

Acta Polytechnica Hungarica Vol. 11, No. 4, 2014

 – 149 –

For evaluating the time performance of DEA implementation two tests over

benchmark mathematical functions f1-f6 have been applied for two different NP

and W parameter values. Table 5a shows results for parameter values NP= 128

and W= 32; Table 5b shows the results for NP= 16 and W= 4. The parameter

values for CR and F used in simulations are taken from analysis presented in [39]

where it was argued that these values are the best values for obtaining optimum

with small number of generations. The parameter values presented for average

number of generations (AveGen), average time (AveTime) and Error were

obtained after the 20 running of the algorithm using an error 1e
-12

or 20,000

generations as stop conditions.

Table 3

Resources consumed in DEA implementation

Category Results

Total Combinational Functions (TCF) 10,330/114,480 (9%)

Dedicated Logic Registers (DLR) 5,366 /114,480 (5%)

Total Memory bits (TMb) 8480/3,981,312 (<1%)

Embedded Multiplier 9-bit elements (EM9) 72/512 (14%)

Fmax (MHz) 95 MHz

Table 4

Resources usedin implementation of objective functions

Category f1 f2 f3 f4 f5 f6

TCF 2405 2915 4397 213 8501 4281

DLR 1182 1494 1929 74 4551 1880

TMb 71 54 140 0 293 113

EM9 18 18 18 0 72 18

Fmax(MHz) 95 95 70 122 71 80

Latency 8clk*W 11clk*

W+10clk

12clk*

W

3clk*

W

17clk*

W

12clk*

W

Table 5

Consuming time for different objective functions

a) NP=128,W=32

f(x) CR F AveGen AveTime(s) Error

f1(x) 0.9 0.7 11571 26.67 1.00E-12

f2(x) 0.2 0.7 2802 7.7484 1.00E-12

f3(x) 0.9 0.7 20000 442.0546 0.0911

f4(x) 0.8 0.7 20000 91.8609 0.089

f5(x) 0.9 0.7 20000 119.9898 1.45E-06

f6(x) 0 0.7 1521 7.4476 2.57E-13

P. Cortés-Antonio et al. Design and Implementation of Differential Evolution Algorithm on FPGA
 for Double-Precision Floating-Point Representation

 – 150 –

b) NP=16, W=4

f(x) CR F AveGen AveTime Error

f1(x) 0.9 0.7 121 6 ms 1.00E-12

f2(x) 0.2 0.7 250 16 ms 1.00E-12

f3(x) 0.9 0.7 144 75 ms 1.00E-12

f4(x) 0.8 0.7 501 53 ms 1.00E-12

f5(x) 0.9 0.7 1683 .24 s 1.00E-12

f6(x) 0 0.7 101 12 ms 1.00E-12

Conclusions

The paper presented the design of Differential Evolution Algorithm on Altera

FPGA following a sequential flow and using three parameter values defining

crossover and mutation operations, scaling factor and population size.

The design does not exploit parallelism approach because we think that this

technique depends of specific application. However we can mention that

parallelism is more adequate in fitness functions module because it is a temporal

bottleneck of many applications and its implementation is straightforward.

The paper describes an implementation of the basic version of EDA considered in

[31].There exist several modifications of Differential Evolution Algorithm, with

the following principal variations: a) the change of the number of individuals that

participate in the crossover process, which are incrementing in even numbers for

better exploring of the space; b) the use of the best individual of the population as

a principal ancestor for better exploiting his local neighborhood into search space;

c) the way in which the crossover-mutation operator is implemented. For more

details about modified DEA see [39, 40]. The FPGA implementation of these

variations of DEA are straightforward.

The paper contains the original results of research that were not submitted to other

journals or conferences.

References

[1] H. Nejat Pishkenari, S. H. Mahboobib, A. Alasty, "Optimum Synthesis of

Fuzzy Logic Controller for Trajectory Tracking by Differential Evolution",

Scientia Iranica, Iran, pp. 261-267, April, 2011

[2] Shing-Tai Pan, "Evolutionary Computation on Programmable Robust IIR

Filter Pole-Placement Design", Instrumentation and Measurement, Vol. 60 ,

pp. 1469-1479, April 2011

[3] A. Chandra, S. Chattopadhyay, "Novel Approach of Designing Multiplier-

less Finite Impulse Response Filter using Differential Evolution

Algorithm", Intelligent Systems and Applications, Vol. 4, pp. 54-62, June

2012

Acta Polytechnica Hungarica Vol. 11, No. 4, 2014

 – 151 –

[4] A. Chandra, S. Chattopadhyay, "Role of Mutation Strategies of Differential

Evolution Algorithm in Designing Hardware Efficient Multiplier-less Low-

pass FIR Filter", Journal of Multimedia, Vol. 7, No. 5, pp. 353-363,

October 2012

[5] A. Hiendro, "Multiple Switching Patterns for SHEPWM Inverters Using

Differential Evolution Algorithms", International Journal of Power

Electronics and Drive System, Vol. 1, pp. 94-103, December 2011

[6] C. Cheng-Hung, L. Cheng-Jian, Member, L. Chin-Teng, "Nonlinear System

Control Using Adaptive Neural Fuzzy Networks Based on a Modified

Differential Evolution", Systems, Man, and Cybernetics, IEEE, Vol. 39, pp.

459-473 , July, 2009

[7] C. J. François, et al, "FPGA Implementation of Genetic Algorithm for UAV

Real-Time Path Planning", Intelligent and Robotic Systems, Vol. 54, pp.

495-510, March 2009

[8] D. Zaharie, D. Petcu, "Parallel Implementation of Multi-Population

Differential Evolution", Concurrent Information Processing and

Computing, IOS, Press, pp. 223-232, 2005

[9] V. Tirronen, et al., "An Enhanced Memetic Differential Evolution in Filter

Design for Defect Detection in Paper Production", Evolutionary

Computation, Vol. 16, No. 4, pp. 529-555, 2008

[10] W. Kwedlo, K. Bandurski, "A Parallel Differential Evolution Algorithm for

Neural Network Training", Parallel Computing in Electrical Engineering,

pp. 319-324, Sept. 2006

[11] H. Shayani, P. J. Bentley, A. M. Tyrrell, "Hardware Implementation of a

Bio-plausible Neuron Model for Evolution and Growth of Spiking Neural

Networks on FPGA", Adaptive Hardware and Systems, NASA/ESA,

pp. 236-243, 2008

[12] J. M. Sánchez-Pérez, et, "Genetic Algorithms Using Parallelism and

FPGAs: The TSP as Case Study", Parallel Processing, Portland, Oregon,

USA, pp. 573-579, June, 2005

[13] R. Lovassy, L. T. Kóczy, L. G, "Function Approximation Performance of

Fuzzy Neural Networks", Acta Polytechnica Hungarica, Vol. 7, No. 4, pp.

25-38, 2010

[14] E. Magdaleno, M. Rodríguez, F. Pérez, D. Hernández and E. García, "A

FPGA Embedded Web Server for Remote Monitoring and Control of Smart

Sensors Networks", sensors, Vol. 14, pp. 416-430, 2014

[15] R. Patel, A. Rajawat, R. N. Yadav, "Remote Access of Peripherals using

Web Server on FPGA Platform", International Conference on Recent

Trends in Information, Telecommunication and Computing, India, pp. 274-

276, 2010

P. Cortés-Antonio et al. Design and Implementation of Differential Evolution Algorithm on FPGA
 for Double-Precision Floating-Point Representation

 – 152 –

[16] E. Sanchez, M. Tomassini, "Towards Evolvable Hardware", Lecture Notes

in Computer Science, Springer, Vol. 1062, 1995

[17] K. Hwang, S. Cho, "Improving Evolvable Hardware by Applying the

Speciation Technique", Applied Soft Computing, Vol. 9, pp. 254-263, 2009

[18] Y. Thoma and E. Sanchez, "A Reconfigurable Chip for Evolvable

Hardware", GECCO, Springer-Verlag Berlin Heidelberg, Vol. 3102, pp.

816-827, 2004

[19] K. Krishnakumar, "Micro-Genetic Algorithms for Stationary and non-

Stationary Function Optimization", Intelligent Control and Adaptive

Systems, Vol. 1196, pp. 289-296, 1989

[20] F. Viveros-Jiménez, E. Mezura-Montes, A. Gelbukh, "Elitistic Evolution: a

Novel Micro-Population Approach for global optimization problems",

Eighth Mexican International Conference on Artificial Intelligence, IEEE,

México, pp. 15-20, 2009

[21] C. A. Coello-Coello, G. Tosano-Pulido, "A Miro-Geneti Algorithm for

Multiobjetive Optimization", Evolutionary Multi-Criterion Optimization,

Switzerland, pp. 126-140, 2001

[22] Wu, D., Gan, D. and Jiang, J. N, "An Improved Micro-Particle Swarm

Optimization Algorithm and Its Application in Transient Stability

Constrained Optimal Power Flow", International Transactions on Electrical

Energy Systems, Vol. 24, pp. 395-411, 2012

[23] Huang T, Mohan AS, "Micro-Particle Swarm Optimizer for Solving High

Dimensional Optimization Problems", Applied Mathematics and

Computation, Vol. 181, pp. 1148-1154, 2006

[24] C. Ying-ping, C. Chao-Hong, "Enabling the Extended Compact Genetic

Algorithm for Real-Parameter Optimization by Using Adaptive

Discretization", Evolutionary Computation, Vol. 18, No. 2, pp. 199-228,

2010

[25] E. Mininno at al, "Compact Differential Evolution", IEEE Transactions on

Evolutionary Computation, Vol. 15, pp. 32-54, February 2011

[26] J. I. Hidalgo, et al., "A Parallel Compact Genetic Algorithm for Multi-

FPGA Partitioning", Parallel and Distributed Processing, Mantova, Italy,

pp. 113-120, February, 2001

[27] K. H. Tsoi, K. H. Leung, P. H. W. Leong, "Compact FPGA-based True and

Pseudo Random Number Generators", 11
th

 Field-Programmable Custom

Computing Machines, Napa, California, USA, pp. 51-61 , April, 2003

[28] Y. Jewajinda, P. Chongstitvatana, "FPGA Implementation of a Cellular

Compact Genetic Algorithm", Adaptive Hardware and Systems,

NASA/ESA, pp. 385-390, 2008

Acta Polytechnica Hungarica Vol. 11, No. 4, 2014

 – 153 –

[29] R. Rastegar, A. Hariri, "A Step Forward in Studying the Compact Genetic

Algorithm", Evolutionary Computation, Vol. 14, No. 3, pp. 277-289,

August, 2006

[30] C. Aporntewan, P. Chongstitvatana, "A Hardware Implementation of the

Compact Genetic Algorithm", Evolutionary Computation, Seoul, Korea,

Vol. 1, pp. 624-629, May, 2001

[31] R. Storn and K. Price, "Differential Evolution - A Simple and Efficient

Adaptive Scheme for Global Optimization over Continuous Spaces",

Journal of Global Optimization, Vol. 11, pp. 341-359, March, 1995

[32] A. León-Javier, M. A. Moreno-Armendáriz, N. Cruz-Cortés, "Designing a

Compact Genetic Algorithm with Minimal FPGA Resources", Advances in

Computational Intelligence, Springer, Vol. 116, pp. 349-357, 2009

[33] A. Swarnalatha, A. P. Shanthi, "Optimization of Single Variable Functions

Using Complete Hardware Evolution", Applied Soft Computing, Vol. 12,

pp. 1322-1329, 2012

[34] Altera Inc, ftp://ftp.altera.com/up/pub/Altera_Material/12.1/Boards/DE2-

115/DE2_115_User_Manual.pdf

[35] Altera Inc, "http://www.altera.com/literature/hb/cyclone-iv/cyclone4-

handbook.pdf"

[36] Altera Inc, "http://www.altera.com/literature/ug/ug_intro_to_megafunctions

.pdf"

[37] Altera Inc, "http://www.altera.com/literature/ug/ug_altfp_mfug.pdf".

[38] P. D. Hortensius, R. D. McLeod and H. C. Card, "Parallel Random Number

Generation for VLSI Systems Using Cellular Automata," IEEE

Transactions on Computers, Vol. 38, No. 10, pp. 1466-1473, 1989

[39] E. Mezura, J. Velázquez y C. A. Coello, "A Comparative Study of

Differential Evolution Variants for Global Optimization", 8
th

 annual

conference on GECCO, USA, pp. 485-492, 2006

[40] A. K. Qin, V. L. Huang, and P. N. Suganthan, "Differential Evolution

Algorithm with Strategy Adaptation for Global Numerical Optimization",

IEEE Transactions on Evolutionary Computation, Vol. 12, No. 2, pp. 398-

417, April, 2009

