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Overview

The Teacher Analysis of Student Knowledge (TASK) is an authentic, contextualized measure of teachers’
ability to analyze students’ mathematical thinking within a grade-specific content area in relation to
research-based learning trajectories, and formulate effective instructional responses. Successful
implementation of the Common Core State Standards in Mathematics (CCSSM) (Common Core State
Standards Initiative, 2010), which were built upon existing research on student learning, will depend on
teachers' ability to translate this information to instructional practice. The TASK instrument, therefore,
has the potential to measure teacher instructional capacity in relation to the CCSSM.

TASK is a 25-minute, online assessment that asks teachers of mathematics to examine a set of carefully
designed student responses to an assessment prompt, to explain what the responses show about
student understanding, to order the student responses according to their developmental sophistication
(i.e., the learning trajectories), and to suggest informed instructional responses. TASKs were originally
developed in 2011 and refined over the past two years. They currently exist in six core mathematics
content areas across grades K—12.

The TASK instrument has undergone two years of iterative development and field trials. Initial
development and piloting of the TASK instrument has been supported by funding from the GE
Foundation, as part of the Consortium for Policy Research in Education's (CPRE) evaluation of the GE
Foundation’s Developing Futures™ in Education program. The development work that CPRE has
conducted to date includes instrument piloting, the development of scoring rubrics and procedures, and
TASK administration to a random sample of approximately 1,400 mathematics teachers in 250 schools
across five states. Using these data, we have conducted studies of inter-rater reliability and internal
consistency, and correlated the TASK to a well-known measure of mathematical knowledge for teaching.
The results point to the potential of the TASK instrument to measure important aspects of teachers’
ability to implement the CCSSM in instruction that are not currently assessed by existing measures.
Based on evidence of its reliability, such a measure could be used for evaluation research on the impacts
of Common Core enactment and associated training and supports. Other potential uses of the TASK
exist, such as identifying areas of professional development to target within a school or district, as the
basis of professional learning community discussions, or as screening for teacher induction.

This report reviews the development, piloting, and preliminary results from the large-scale field trial. In
the first section, we review the need for an assessment of teachers’ capacity for learning trajectory-
oriented instruction and the theoretical foundations that inform our work. We then describe the
instrument and its development. Next, we detail the scoring process and the training of raters. The final
section contains the analysis of the large-scale field trial conducted in 2012-13. We conclude with some
directions for future work with this instrument.



Theoretical Foundations

TASK is a measure of teachers’ capacity for learning trajectory-oriented formative assessment. The idea
of learning progressions, or “successively more sophisticated ways of thinking about a topic” (National
Research Council, 2007), have recently become prominent in mathematics educational research, as well
as conceptualizations of mathematics standards, assessment, and instruction (Battista, 2011; Clements
& Sarama, 2004; Confrey, 2008; Daro, Mosher, & Corcoran, 2011; Empson, 2011; Szatjn, Confrey,
Wilson, & Edgington, 2012). As we describe in this section, learning progressions, or learning trajectories
as they are most often called in mathematics education literature, can provide a guiding framework for
the process of formative assessment, one of the most powerful current educational practices in terms of
improving student learning (Black & Wiliam, 1998; Crooks, 1988; Kluger & DeNisi, 1996; Natriello, 1987).

Learning Trajectories

Research in mathematics education indicates that teachers who make sense of student thinking and
incorporate this knowledge as a regular part of their instruction are better able to develop students’
conceptual understanding of mathematics (Cobb, Boufi, McClain, & Whitenack, 1997; Stein, Engle,
Smith, & Hughes, 2008). In the past decade, learning trajectories have been developed for several
content topics, including early number, operations, geometry, measurement, multiplicative thinking,
and rational number reasoning (Daro et al., 2011). While there are differences, particularly in grain size
and level of detail, these trajectories are all research based and describe the development of conceptual
understanding of core concepts, common student errors, and/or preconceptions or misconceptions that
are precursors to more sophisticated thinking. As such, they can provide teachers with a clear
articulation of learning goals, and the development of students’ thinking, and inform learning activities
that are likely to move students along the path toward achieving those goals, thereby linking research
on learning with both assessment and instruction (Daro et al., 2011; Heritage, 2008; Szatjn et al., 2012).
In the context of daily classroom practice, learning trajectories can provide teachers with a framework
for analyzing the strategies students use to solve problems and then determining where students’
current understanding is situated along the progression in order to make subsequent instructional
decisions. This process is at the core of formative assessment.

Formative Assessment
Formative assessment involves assessing student understanding relative to a standard or goal, providing
feedback to the student in the form of instructional guidance, and continuing to assess and, ideally,
diminishing the gap between the student’s performance and the goal (Ramaprasad, 1983; Sadler, 1989).
The classical theory of formative assessment is based upon the theory of how teachers gain access to
students’ current state of understanding and move them toward a goal. According to Sadler (1989),
“Formative assessment is concerned with how judgments about the quality of student responses
(performances, pieces, or works) can be used to shape and improve the student's competence” (p. 120).
The essential activity of formative assessment is the use of some assessment mechanism to identify and
change the gap between a learner’s current knowledge and a desired goal (Ramaprasad, 1983; Sadler,
1989). That is, an assessment of student understanding becomes formative when its information is
understood by the teacher and activated as feedback to the learner, altering the distance between the
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present and desired state. As Ramaprasad (1983) states, “Feedback is information about the gap
between the actual level and the reference level of a system parameter which is used to alter the gap in
some way” (p. 4). Though critical for improving student learning, formative assessment is challenging;
numerous studies have concluded that teachers struggle to use assessment information to inform their
own instructional practice (Black & William, 1998; Datnow, Park, & Wohlstetter, 2007; Kerr, Marsh,
Ikemoto, Darilek, & Barney, 2006; Young, 2006).

Figure 1. The Formative Assessment Process

Current
Student
Knowledge Goal
Learning | | | | | | | | Student
Trajectory < | | | | | | | | > Learning

..........
..........

Iterative Formative Assessment

Well-designed student assessments can make student thinking visible, and through ongoing
assessments, teachers can collect evidence and interpret student performance in relation to the known
progression of student thinking toward the learning goal. Learning trajectories can provide a framework
to guide teachers in making sense of the information collected from formative assessments. The
formative assessment process is represented in Figure 1. In this figure, one can see the gap between the
student’s current knowledge and the goal. The task of a teacher is to use information about the
student’s current state of knowledge (often in the form of assessments) to understand where the
student is currently. Then, utilizing knowledge of the appropriate learning trajectory, the teacher can
provide instruction to move the student toward greater understanding. Subsequent information on the
student’s state of knowledge (in the form of a subsequent assessment) can provide teachers with
knowledge about whether the student has moved toward the goal, as represented by the progress
being made in the student’s understanding and the sophistication of the strategies the student is using.

New Directions, New Demands on Teaching

The CCSSM, recently adopted by 45 states, have substantially increased expectations for both students
and teachers. The CCSSM are designed to provide focus and coherence, balance of conceptual and
procedural skills, emphasis on mathematical practices, and ambitious expectations for college and
career readiness (Common Core State Standards Initiative, 2010). As stated in the introduction of the
Standards, the “development of the standards began with research-based learning progressions
detailing what is known today about how students’ mathematical knowledge, skill, and understanding
develop over time” (p. 4). This focus on learning trajectories places new demands on teaching, as

6



teachers must not only understand the mathematical ideas and skills embodied in the Standards, but
also assess where students are in the trajectory of learning those concepts and skills, and then use that
information to design and enact instructional responses that support students’ movement along that
trajectory. In other words, teachers must be able to implement formative assessment processes based
on, and supportive of, the development of student thinking.

The ability to measure teacher knowledge, capacity, and growth in relation to the understanding and
use of learning trajectories will therefore become increasingly important as states and districts train
teachers to reach the goals of the CCSSM. While more established measures of “mathematics
knowledge for teaching” expand the view of content knowledge to include several domains of both
subject-matter knowledge and pedagogical content knowledge that are specifically required in the act of
teaching mathematics (Hill, Schilling, & Ball, 2004), these multiple-choice measures have not been as
useful in capturing teacher knowledge of learning trajectories or more subtle manifestations of teacher
conceptual change, such as changes in the sophistication of teachers' mathematical analysis of student
work (Goldsmith & Seago, 2007).

The current reform era of the Common Core State Standards (CCSS) requires a substantial increase in
teachers’ effective use of formative assessment based on learning trajectories. Mathematics teachers
must have a deeper understanding of their students’ conceptual understanding and the ability to teach
with an explicit awareness of the developmental progressions that are embedded within the Common
Core. The TASK instruments are designed to tap into these more ambitious expectations for teachers of
mathematics.

The TASK Instrument

In order to measure teachers’ capacity for learning trajectory-oriented formative assessment, the TASK
presents a teacher with a carefully designed, grade-appropriate set of student responses to a
mathematics problem. Student responses characterize different levels of sophistication of student
thinking and misconceptions. Prompts ask the teacher to examine the mathematics problem and the
students’ solution strategies, to analyze students’ thinking represented in their responses, and to
provide subsequent instructional suggestions.

An example of the different levels of sophistication of students’ thinking and common strategies and
misconceptions that are embedded in the student responses is presented in the fractions TASK for
grades 3-5 in Figure 2. The problem involves reasoning about whether two fractional quantities
combine to make a whole. As shown in Figure 2, Abby, Carla, and Devon’s work reflect the use of visual
models to make sense of parts and wholes, while Brad and Emma’s work demonstrate more abstract
reasoning about equivalence and addition. Carla, Devon, and Frank’s work are less developed and
contain misconceptions about partitioning, part/whole understanding, and the meaning of fractions. In
this way, the student work represents some of the important landmarks that have been identified in
current research on children's learning of fractions as well as an overall progression from concrete to
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more abstract understanding of fractional quantities (Confrey, 2008; Lamon, 2012; Steffe & Olive, 2010).
Thus, the TASK provides a realistic context from which to elicit information about what teachers pay

attention to when they examine student strategies that they are likely to come across in their own
classrooms.

Figure 2. Problem and Designed Student Responses from the Grades 3-5 Fractions Task

“Each carton holds 24 oranges. Kate’s carton is 1/3 full. Paul’s carton is 2/4 full. If they put all

their oranges together, would Kate and Paul fill 1 whole carton? Solve the problem. Show
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Teachers are led through the following seven prompts:

* Whatis the correct answer to this problem? Briefly explain your answer.

* What does a student at your grade level need to know and/or understand in order to solve this
problem?

* Examine the solutions of six students to the same math problem. Do you think each student’s
solution process is mathematically valid? (Yes/No)



* Comment on each student's solution process in terms of what the work suggests about the
student's understanding of numbers and operations (or for the high school TASKs, algebraic
thinking and reasoning or geometric thinking and reasoning).

* Rank each student's solution process in order of the level of sophistication of the mathematical
thinking that is represented.

* Explain why you ranked the mathematical thinking of [student name] number [rank] in relation
to the responses of the other students.

* As ateacher, what would you do next with the two students below? [Abby and Devon]Please
explain your rationale for the steps you suggest.

CPRE developed six versions of the TASK instrument in the following core mathematics content areas:
addition for teachers in grades K—1, subtraction for teachers in grades 2—3, fractions for teachers in
grades 3-5, proportional reasoning for teachers in grades 68, algebraic reasoning for teachers in grades
9-10, and geometric reasoning for teachers in grades 10—11. These content areas represent core or
fundamental mathematical ideas at each of the grade levels and the TASKs are designed around key
concepts in those domains (e.g., part/whole, equivalency, and magnitude for fractions). For the algebra
and geometry TASKs, since the problems reflect a higher level of complexity that require longer student
responses, the instrument contains only four examples of student work. While the content areas are
different across grade levels, all TASKs follow a consistent structure in both the prompts and the fact
that the student work reflects key stages in the development of student thinking in the content area.

Each online TASK takes a teacher approximately 25 minutes to complete. Teachers are led through a
series of questions that measure six key domains of learning trajectory-oriented formative assessment
related to the specific mathematical concept that is being assessed. These include:

1) Content Knowledge - Teachers need to be able to understand and correctly solve mathematics
problems that assess the content they are teaching.

2) Concept Knowledge - In order to assess student understanding, teachers must be able to
identify and articulate the concept and related sub-concepts that a particular mathematics
problem or item is assessing.

3) Analysis of Student Thinking—Mathematical Validity - Once a teacher administers an
assessment to a student, he/she must be able to understand the logic or mathematical validity
of the strategy that the student uses to solve the problem.

4) Analysis of Student Thinking— Conceptual Understanding - Teachers need to be able to identify
the underlying conceptual understanding or misconceptions that are present in student work.

5) Learning Trajectory Orientation - After analyzing the strategy a student uses to solve a math
problem, teachers need to be able to position that strategy along a learning trajectory for the
respective mathematics content. Thus, teachers must have a sense of what the developmental
progress looks like for the particular mathematics concept and where to place students along
that continuum. In addition to assessing teachers’ ability to correctly order the student solutions
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in terms of sophistication of thinking, the TASK assesses teachers' ability to use learning
trajectories to justify that ranking.

6) Instructional Decision Making - Finally, teachers must choose an appropriate instructional
response and be able to describe why that instructional intervention is designed to move
students from their current level of understanding along the developmental trajectory toward

greater understanding.

The six domains measured by the TASK can be located in five of the domains in the framework of
Mathematical Knowledge for Teaching (MKT)?, proposed by Ball, Thames, and Phelps (2008) (shown in
Figure 3). While we do not aim to measure the MKT domains in their entirety, the TASK measures their
application in the context of formative assessment that is informed by learning trajectories. Sztajn et al.
(2012) also propose a Learning Trajectory-Based Instruction (LTBI) interpretation of the MKT categories
that in many ways parallels our conceptualization of these domains. In order to show how the TASK
aligns with MKT and LTBI interpretations of MKT, the specific prompts from the TASK are shown in Table
1 along with the corresponding domain of teachers’ formative assessment capacity that are assessed by
each set of prompts, as well as where these domains are located in MKT and the learning trajectory
conceptualization of MKT. The coding and scoring of the prompts are described in the next section.

Figure 3. Domains of Mathematical Knowledge for Teaching

SUBJECT MATTER KNOWLEDGE PEDAGOGICAL CONTENT KNOWLEDGE

_— | T

Common Knowledge of
Content Content and

Knowledge Specialized Students Knowledge
Content of Content
) Knowledge and Curriculum
Horizon Knowledge of
Content Content and
Knowledge Teaching

\_/

Note: Reproduced from Ball, Thames & Phelps (2008)

1 TASK does not measure Horizon Content Knowledge, or the “awareness of how mathematical topics are related
over the span of mathematics included in the curriculum” (Ball, et al, 2008, p. 403)
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Table 1. TASK Prompts by Domain of Learning Trajectory-Oriented Formative Assessment and

MKT

TASK Domain

Number

of

TASK Prompt

LTBI interpretation of MKT

Content
Knowledge2

Concept
Knowledge

Analysis of
Student
Thinking—
Mathematical
Validity

Analysis of
Student
Thinking—
Conceptual
Understanding

Learning
Trajectory
Orientation—
Ranking

Learning
Trajectory
Orientation—
Rationale

Instructional
Decision
Making

Prompts

Examine the mathematics
problem and state the
correct answer

(grades 3 and up only),
Explain how you solved the
problem.

Explain what a student at
your grade level needs to
know and/or understand in
order to solve the problem.

Examine the solutions of
four to six typical students
and determine if their
solution processes are
mathematically valid.

Comment on four students’
solution processes in terms
of what the work suggests

about their understanding of

number and operations (or
algebraic/geometric
reasoning).

Rank each student's solution
in order of the level of
sophistication of the
mathematical thinking that
is represented.

Explain the rationale for the
rankings given to each
student.

Suggest instructional next
steps and explain the
rationale for those steps for
a student who has a correct,
but less-sophisticated
response to the problem,
and a student who
demonstrates conceptual
weakness in the response.

Common
Content
Knowledge

Knowledge of
Content and
Curriculum

Specialized
Content
Knowledge

Knowledge of
Content and
Students

Knowledge of
Content and
Students

Knowledge of
Content and
Teaching

Knowledge of concepts and procedures
represented at each level of the trajectory to
perform the tasks associated with each level,
all the way to the overall mathematical

generalization at the top of the trajectory.

Knowledge of how to use student voice to
choose and adapt curricula that are built
based on mathematical disciplinary
perspectives.

Knowledge of how to use one’s
mathematical perspective to test the
appropriateness of various solutions and
representations learners propose in their
own voice; unpacking each level of the
trajectory, explaining the mathematical
issues behind the levels.

Content knowledge intertwined with
knowledge of how students think about,
know, or learn particular content.

Knowledge of the various levels of the
trajectories through which learners
progress; knowledge of the cognitive steps
that support development and of the ways
learners approach certain tasks.

Knowledge of ways to support learners’
cognitive development along the trajectory
to help students’ voices develop into
mathematical perspectives; knowledge of
how to select and target tasks to promote
individual movement along the trajectory
and content-rich classroom discourse.

’ Not a central domain measured by the instrument.
* The number of prompts depends on the TASK, with addition, subtraction, fractions, and proportions having six

and algebra having four.




A benefit of online administration of the TASK is that the system can target reminders to non-
respondents to achieve a high response rate. Another benefit is that responses are entered directly into
the master database, reducing errors from data entry, and increasing cost efficiency, and giving
researchers real-time access to completed assessments. The TASK is markedly different from current
teacher evaluation and assessment frameworks employed by researchers, states, and districts
throughout the nation. Teachers who took the pilot form reported that they actually enjoyed
completing the TASK because it presents them with real classroom situations and student work that is
similar to what they see from their students. Teachers respond to prompts in their own words, not
selections from fixed-choice items. As a result, the TASK allows teachers to demonstrate meaningful
application of essential knowledge and skills, without leading them with prompts or intimidating them
with questions that are perceived to have right or wrong answers.

Instrument Development

Pilot

The initial pilot of the instrument occurred in Fall 2011, with a convenience sample of 60 teachers and at
least 10 responses at each grade band. The pilot data were used for two purposes. The first purpose was
to begin development of the detailed scoring rubrics for each domain of the instrument and the second
was to advance the design of the instrument. Both the actual responses and participant feedback
contributed to our modifications of the instrument. Based on what we learned from this feedback, the
instruments were substantially modified and scoring rubrics were developed as described in the next
section. Adjustments to the instrument included changing the order of some prompts, rewording
several prompts, and clarifying the instructions.

Large-Scale Field Implementation

In Spring 2012, we used the revised TASK instruments to conduct a larger field trial. This study was
conducted by CPRE in partnership with five public school districts in five states. The districts varied in
terms of size, student demographics, and programs of mathematics instruction. Table 2 presents the
number of schools and the average number of students per grade, as well as student demographics. To
achieve our final sample, we drew 1,851 teachers, of which 1,386 responded (a 74.9% response rate). Of
completed TASKs, 6% were removed because teacher response data for two or more prompts were
missing or so brief that it was not possible to be coded. Recruitment for this field trial used a stratified
random sample of mathematics teachers by grade/subject, in which participation was voluntary, and we
used incentives to reach the response goal. Teachers were stratified twice, first by district, and then by
grade bands in elementary grades (i.e., K—1, 2—3, 4-5, 6—8) or mathematics subject in secondary grades
(i.e., algebra, geometry). Teachers were sent several reminder post cards were offered a $40 Amazon
gift card upon completion of the survey. Data collection included 247 responses on the addition TASK,
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185 responses on the subtraction TASK, 376 responses on the fractions TASK, 292 responses on the
proportions TASK, 166 responses on the algebra TASK, and 83 responses on the geometry TASK.*

Table 2. Sample Composition

District A District B District C District D District E
District Size
# Schools 23 57 133 184 20
# Students 12,324 32,251 93,951 79,130 15,281
Demographics
% White 47% 25% 53% 14% 39%
% Economically Disadvantaged 54% 73% 63% 82% 49%
% Limited English Proficient 8% 4% 6% 11% 14%
% Special Education 18% 20% 13% 20% 9%
District Teachers
Sample Size” 325 376 394 438 318
# Teacher Respondents 273 274 268 329 242
TASK Response Rate 73% 84% 68% 75% 86%

Notes: District statistics reflect most recent published data from either 2010-2011 or 2011-2012 school year. ° Random sample
within district stratified by grade intervals; teachers with invalid e-mails were not replaced.

Scoring the TASK

As described earlier and shown in Table 3, the TASK instrument collected teachers’ responses to
prompts or sets of prompts that assess six domains of teacher knowledge. Three of these response
types were forced choice or short answer and could be scored automatically while the rest were
constructed responses scored by trained raters with a rubric or a combination of a coding scheme and
rubric. The procedures for scoring both types of responses are explained below.

Coding Procedure

We developed a paperless process to link the web-based assessment to a web-based coding portal to
score the teacher responses that required judgment by a trained rater. In the coding portal, the raters
assigned codes and/or rubric scores to the teachers’ written responses. The coding portal was designed
to have raters score responses in batches of 10 by question, which increased efficiency and fostered
independent assessments across the response of any individual respondent. Raters reported that they
could score an average of five TASKs in one hour.

The rubrics that raters used to score specific prompts about student work were based on a four-point
ordinal scale to capture the overall orientation toward teaching or student understanding. We
developed this rubric from the pilot data through both an inductive and deductive process. First, a team
of researchers read the entire set of responses to generate initial categories and codes to capture what
teachers were referencing in their responses to each question. These codes were then grouped into
larger categories, drawing on existing research in mathematics education to guide the analysis in terms

* We do not report geometry scoring in this report. It will be added in a later version.
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of the degree to which the response reflected elements of a learning trajectory orientation. The
distinction between procedures, or what students did, and concepts, or what students understood,
became salient. The shift from procedural to more conceptual views of mathematics has long been
promoted in mathematics reform literature (e.g., Hiebert, 1986; National Council of Teachers of
Mathematics, 1988; National Research Council, 2001), and since learning trajectories by nature focus

Table 3. TASK Prompts, Domains, and Scoring

Domain of Teacher DL

Knowledge Assessed

of Scoring

Prompts
Examine the math problem and state the correct
1 Automated
answer.
Content Knowledge Explain how you solved the problem (grades 3
1 P 4 P & Coded by Rater
and up only).
Explain what a student at that grade level needs
. Scored and
Concept Knowledge 1 to know and/or understand in order to solve the
Coded by Rater
problem.
Analysis of Student Examine the solutions of four to six typical
Thinking— 4-6° students and determine if their solution Automated
Mathematical Validity processes are mathematically valid.
Analysis of Student Comment on four students’ solution processes in
s Scored and
Thinking—Conceptual 4 terms of what the work suggests about the
. , . . Coded by Rater
Understanding students’ understanding of the mathematics.
Learning Trajectory Rank each student's solution in order of the level
Orientation—Ranking 1 of sophistication of the mathematical thinking Automated
that is represented.
Learning Trajector Explain the rationale for the rankings given to
. g' ) .y 4-6* P 858 Scored by Rater
Orientation—Rationale each student.
Suggest instructional next steps and explain the
. - rationale for those steps for a student who has a
Instructional Decision L
. correct, but less-sophisticated response to the Scored by Rater
Making
problem, and a student who demonstrates
conceptual weakness in the response.

on conceptual development, a conceptual orientation toward student work was rated as higher than
one that was only procedural. More recently, research on learning trajectories promotes a
developmental view, where students' conceptual knowledge develops in relation to instruction along a
predictable path toward more complex and sophisticated thinking (Battista, 2011). Therefore, in order
for a response to be at the highest level of the rubric, we determined that a teacher’s focus on
conceptual understanding must be organized into a developmental framework. We then had four
ordinal categories (general, procedural, conceptual, and learning trajectory) that applied to each

> The number of prompts depend on the TASK, with addition, subtraction, fractions, and proportions having six,
and algebra having four.

14



qguestion on the TASK. The general rubric shown in Figure 4 describes each of the TASK rubric categories.
These categories are seen as cumulative where each level builds on the one before it; therefore, a
conceptual response might also contain some procedural focus.

As described below, the four domains were scored with more specific versions of this rubric: Concept
Knowledge, Analysis of Student Thinking, Learning Trajectory Orientation—Rationales, and Informed
Instructional Decision Making.

Figure 4. TASK Rubric Levels

Score Category Description
Response draws on developmental
learning trajectory to explain student Learni ctory

4 Learning Trajectory understanding or develop an instructional
response.
Response focuses on underlying concepts,
3 Conceptual strategy development, or construction of
mathematical meaning. Procedural
Response focuses on a particular strategy
2 Procedural or procedure without reference to student
conceptual understanding. General
Response is general or superficially related
1 General to student work in terms of the
mathematics content.

Conceptual

Scoring of the Six Domains of Learning Trajectory-Oriented Formative

Assessment Capacity

Content Knowledge

Teachers were asked to determine the correct answer to the mathematical problem in the TASK before
they were shown any student responses, and in grades 3 and up, they were asked to describe how they
would solve the problem. Particularly in the upper grades, a teacher’s answer to the problem provides a
crude indicator of content knowledge. Since the responses were numerical, they could be automatically
scored as correct/incorrect. Incorrect responses provide an indication of the teacher's weakness in
content knowledge; however, since this was the only item that addressed content knowledge, and we
do not have a way to assess the range and variation in the teacher’s content knowledge, we do not
consider it as one of the main domains measured by the TASK. In grades K-2, since the problems were
simple addition and subtraction word problems, we did not ask teachers to describe how they solved
the problem. (While children are likely to use a variety of strategies on these problems, adults would
know the answer mentally.) However, on the fractions, proportions, algebra, and geometry TASKs
(grades 3 and up), we did ask teachers to describe how they solved the problem. We developed a coding
scheme to capture the range of strategies used and then trained raters to identify these strategies. The
instrument therefore captures qualitative data on teachers’ strategies. While we have not included
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these data in our current analyses, the codes could be useful for examining related questions (e.g., how
do teachers’ own strategies interact with the way they look at student strategies?).

Concept Knowledge

As shown in Table 4, the general rubric was adapted so that teachers’ written responses could be given
an ordinal score from 1 to 4 in relation to the extent to which the response focused on the underlying
conceptual understandings in the problem itself. For this question, the score level of 2 was subdivided
into categories of 2P (procedural focus) and 2C (procedural with general conceptual focus). This
distinction became salient during the coding process as raters frequently encountered responses that
contained some reference to conceptual understanding but were not articulated sufficiently to warrant
a score of 3. Thus, there are actually five levels to the rubric score for this prompt.

Table 4. Rubric for Concept Knowledge

Prompt: What does a student at your grade level need to know and/or understand in order to solve this
problem?

4 Learning Trajectory Informed focus on understanding. Includes more than one articulated concept.
Focus on underlying concepts. At least one concept is mentioned at an articulated
3 Conceptual Focus .
level or multiple concepts at the general level.
’C Procedural/Conceptual Focus on how the problem is solved but one concept is mentioned at the general
Focus level with no explication (e.g., part/whole)
2P Procedural Focus Focus on how the problem is solved using a procedure or specific strategy
. Focus on general topic (e.g., fractions, ratio, addition, subtraction, problem solving,
1 General/Superficial . & pic (e.g P &
reasoning, number sense, etc.)

Table 5 provides sample teacher responses with the scoring rationale from the grades 3-5 fraction TASK.

Table 5. Concept Knowledge: Sample Responses, Rubric Scores, and Rationale from Grades 3-5
Fractions TASK

Prompt: What does a student at your grade level need to know and/or understand in order to solve
this problem?

Each carton holds 24 oranges. Kate’s carton is 1/3 full. Paul’s carton is 2/4 full. If they put
their oranges together, would Kate and Paul fill 1 whole carton? Solve the problem. Show

our work.
Score Teacher Response Explanation

They need to understand: A fraction is a part of a whole. A whole can
be a group of things or one thing. 24 oranges is a whole, which is

4 mentioned in this problem. 12/12 is a whole. When adding fractions,
you don't add the denominator. Either how to find 1/3 and 2/4 of 24
or how to make a common denominator.

This learning trajectory
response references
multiple underlying
concepts.

This conceptual response

3 They need to know that 2/4 = 1/2. They also need to know the focuses on underlying
relationship of fourths and thirds...which is bigger. concepts and
understanding.
2C Understand fractions, part of a whole, and know how to add. il TSP elatiTing
the part/whole concept
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but only in a general way.
This response is

2p They have to reduce fractions and be able to find common procedural because it
denominators and then add fractions. focuses only on a specific
procedure.
This general response uses
Fractions. Reduction. Multiplication. Number order. Ability to count to g P
1 broad terms and

20. Addition. English comprehension.

references only sub-skills.

Analysis of Student Thinking—Mathematical Validity

After being shown the set of typical student responses to the problem, teachers were asked to
determine whether each student’s solution process was mathematically sound by clicking “yes” or “no”.
As Ball et al. (2008) state, determining whether a student’s solution will work in general is mathematical
knowledge that is unique to teaching, and falls within the subset of mathematical knowledge of teaching
that they call specialized content knowledge. It differs from content knowledge in that one would not
expect a person trained in mathematics, but who is not a teacher, to necessarily have that expertise.

For each TASK, three of the solution processes were mathematically correct and two were incorrect. In
all TASKs, one solution was somewhat ambiguous in that the student attempted to use an appropriate
strategy, but either made a conceptual or computational error in the process. To score this question, we
looked at the number of correctly identified responses out of the five that were unambiguous. This
created a variable that could range from 0 to 1 and interpreted as percent correct. (If someone correctly
identifies all five, they have a score of 1.0 or 100%).

Analysis of Student Thinking— Conceptual Understanding

In scoring responses to the four prompts that asked teachers to comment on specific students’ solution
processes in terms of the students’ understanding of number and operations (or algebraic or geometric
reasoning), we used the same process that was used to score the domain of Concept Knowledge. Table
6 shows the rubric with specific descriptors that relate to the analysis of understanding shown in
student the work and Figure 5 shows illustrative examples of each level of the rubric.

Table 6. Rubric for Analysis of Student Thinking— Conceptual Understanding

Prompt: Please comment on each student's solution process in terms of what the work suggests about
the student's understanding of numbers and operations.
Informed focus on understanding. Identifies multiple concepts or sub-concepts
4 Learning Trajectory (more than one at articulated level); analysis of student reasoning. Use of clear
and appropriate terminology.
Analysis of what student did and understands. Some reference to underlying
3 Conceptual Focus concepts and/or reasoning at an articulated level and correct identification of
student strategy.
2C General Conceptual Focus Some reference to concepts at a general level.
Description of what student did without specific reference to underlying
2P Procedural Focus concepts. Describes student strategy or what is wrong about strategy or what
student should have done.
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1 General/Superficial

No focus on understanding. Focus is at general level, correct/incorrect answer

only, or there is a failure to interpret student strategy. “Numbers and

operations” falls in this category since it is referenced in the question stem.

Figure 5. Analysis of Student Thinking: Sample Responses, Rubric Scores, and Rationale from
Grades 3-5 Fraction TASK

ZA{=/2_

l(; You put
W+ does not
make a whole

@ So the carton
I1s et Full.

Prompt: Please comment on Abby's solution process in terms of what the work suggests about her

understanding of numbers and operations.

Score

2C

2P

Teacher Response
Abby understands that the size of fractions is determined by the
denominator, and they represent breaking the whole into equal parts.
She also understands equivalent fractions. Thereby, she is able to
compare the two fractions, and, ultimately, compare her results to
one whole.

She shows that she understands the concepts of fractional part of a
whole.

Abby understands how fractions make a whole part.

She drew 2 pies and was able to figure out that the 2 different
fractions didn't equal a whole together.

Abby has a basic understanding of fractions.

Explanation

This learning trajectory
response references
multiple underlying
concepts in the student
work.

This conceptual response
focuses on underlying
concepts and
understanding.

This response references
conceptual understanding,
but it is not articulated.
This response is
procedural because it
describes what the student
did.

This general response does
not provide any specific
evidence.

To increase rater reliability in the domains of Concept Knowledge and Analysis of Student Thinking—

Conceptual Understanding, we developed a coding scheme to guide raters in their categorization of

responses in relation to different dimensions of the particular mathematical concept. Using the pilot
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data, we developed a checklist of frequently mentioned components organized under each of the four
rubric categories. A team of three to four researchers then used the coding scheme and rubrics to code
40 pilot responses in each content area. Codes and rubric scores were compared in order to clarify
and/or modify the codes and rubric descriptions. Raters then used this list of components as a guide
when making the rubric judgments. These checklists provided details to guide the raters and partially
automated the scoring process to distinguish level 2P from level 2C. They also provided us with
qualitative or descriptive data about what teachers were paying attention to when examining the
problem and the student work samples. Appendix A provides an example of the coding scheme for the
grades 3-5 fractions TASK. Specific coding schemes were developed for each of the other content areas
in a similar format. The “other” category in the coding scheme was used only for the analysis of student
thinking cluster, where the rater could indicate if the teacher misunderstood the mathematics behind
the strategy or the teacher’s explanation contained a mathematical error or misconception. We also
noted instances where teachers were focusing on student explanation or communication skills or
referenced the process of scoring student work. These “other” codes were not used to determine a
rubric score, but noted for possible later analysis.

The coding scheme is organized in the form of an online checklist, with descriptors under three main
categories: general/superficial, procedural, and conceptual. Raters are able to view the original question
and teacher response on the top half of the screen, while the codes are presented in the lower half next
to check boxes. After the raters have assigned the relevant codes, they are presented with a summary of
selected codes and then proceed to determine a rubric score.

The coding scheme shows how the conceptual category is further divided into general and articulated
responses. If the reference to conceptual understanding remains at the general level (e.g., the teacher
mentions part/whole understanding with no further explication or support to allow the rater to know
how the teacher determined this), the response is given the general conceptual code CP. If the response
articulates the student’s conceptual understanding (e.g., the teacher explains how the student’s work
shows understanding of fractional quantities as a relationship between part and whole), it is given the
articulated conceptual code CP1. Raters are trained that the response must contain at least one
articulated conceptual code in order to receive a rubric score of 3 (conceptual focus). When raters
assign a score of 2 to the response, we are able to use the codes selected to automatically determine
whether it should be given a score of 2P or 2C by looking at the codes the raters have checked off.

The coding scheme supports the rubric; as raters check off general, procedural, or conceptual elements
in the response, they are documenting evidence to support the rubric score. Coding produces a
tabulation of the specific concepts and procedures that are referenced by teachers. In this way, coding is
both holistic and analytic, and we have a robust base of information on which to score rubrics. We also
envision these checklists to be useful for future analysis to decompose patterns of teacher responses
within each of the rubric categories.

Learning Trajectory Orientation—Ranking
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Teachers were also asked to rank the four or six (depending on the TASK) responses in order of the level
of sophistication. As described earlier, the student work was deliberately constructed to represent
different levels of sophistication of student thinking as well as common misconceptions or conceptual
weaknesses. While there was no one correct way to rank the responses, for each TASK, the student
solutions fell into three categories: whether the response contained evidence of solid numerical,
fractional, proportional, or algebraic reasoning; evidence of transitional thinking in relation to
numerical, fractional, proportional, or algebraic reasoning; or no evidence of numerical, fractional,
proportional, or algebraic reasoning. If the teacher correctly ordered the student responses in relation
to these categories (e.g., students falling into the solid category were ranked at the top, students falling
into the transitional category were ranked in the middle, and students falling in the lowest or "no
evidence" category were ranked at the bottom), then the response was considered to be ordered
correctly. Additionally, within some of these levels, finer distinctions could be made in terms of
sophistication of reasoning. We were therefore able to devise the following rubric and an automated
procedure for assigning a rubric score to the different rankings that were present in the teacher
responses (see Table 7).

Table 7. Automated Rubric for Learning Trajectory Orientation—Ranking

Rubric
Score

Ranking Explanation

Correct order and most sophisticated thinking

4 . e Advanced learning trajectory orientation.
identified. gtraj y

3 Correct order. Evidence of learning trajectory orientation.
Incorrect order but the lowest two responses . , . .

2 P Able to identify correct and incorrect reasoning.

were in the bottom two-thirds of the ranking.

No emphasis on student reasoning or prioritizin
Incorrect order and one of the lowest two P gorp g

1 . use of specific method over conceptual or
responses was ranked in the top two. f specif . P
procedural understanding.

The lowest score of 1 was assigned to rankings where one of the lowest-level responses was ranked first
or second. Since those responses reflected very superficial understanding or a complete lack of
understanding on the part of the student, but often contained a traditional procedure, this could be an
indication that either the teacher prioritized the use of a specific algorithm or that the teacher did not
have the ability to distinguish correct from incorrect reasoning in student work. In either case, it
represented the lowest level of knowledge of learning trajectories in that it was not based on students’
thinking.

Learning Trajectory Orientation—Rationale

As described earlier, the ranking provided by the teacher allowed us to assign an automated Learning
Trajectory Orientation score. We also scored the rationales provided by the teacher. The scorer first
examined the rationales provided by the teacher for the student solutions they ranked in the top three
to determine what the teacher was paying attention to when evaluating successful student work. The
scorer then examined the rationales for the student solutions ranked in the bottom three to see how
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the teacher was evaluating weaknesses in student work. Using the rubric shown in Table 8, two scores

were assigned for each respondent.

Table 8. Rubric for Learning Trajectory Orientation—Rationale

Prompt: Please explain why you ranked 's solution process number __in relation to the

responses of the other students.

Learning

4 Trajectory

3 Conceptual

2 Procedural

1 General

Ranking is based on level of sophistication of thinking or reasoning behind method used
in relation to learning trajectory or framework (i.e., the movement from concrete to
abstract understanding of number); makes sense of student thinking or errors and/or
identifies common misconceptions in student work

Ranking is based primarily on understanding or not understanding underlying concepts
(or students’ algebraic reasoning), and those concepts are named or explained. Efficiency
is connected to understanding or applicability to a wide range of problems. Reference is
made to the mathematics behind student’s reasoning.

Ranking is based primarily on using/not using a specific preferred method,
communication or clarity, or demonstrating a specific skill or method without reference to
specific underlying concepts or understanding. Overall focus is on what student did.
Efficiency is referenced in terms of speed or ease without regard to understanding or
thinking. Conceptual understanding may be referenced but without mention of specific
concepts.

Ranking is based primarily on getting correct/incorrect answer, format of answer, or
other external aspects (labeling, neatness). Uses general terms to describe errors in
students’ strategies, such as "doesn’t understand" or "doesn’t make sense" or there is a
failure to make sense of students’ strategies.

Instructional Decision Making
Teachers were asked to provide next steps and explain their rationale for a student who has a correct,

but less-sophisticated response to the problem, and a student who demonstrates conceptual weakness

in the response. We initially developed a rubric for instructional implications to reflect the four levels

that form the core of our measures (general, procedural, conceptual, and developmental/learning

trajectory). However, because teacher responses were often not well developed or articulate enough to

make finer distinctions, and raters often had difficulty agreeing whether the method described actually

built on student understanding, we decided to combine levels 3 and 4, as shown in Table 9.
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Table 9. Rubric for Instructional Decision Making

Prompt: Examine [Abby or Brad's] work. As a teacher, what would you do next? Please explain your
rationale for the steps you suggest.

Help student develop strategy or mathematical meaning, see flaw in thinking/reasoning,
and develop conceptual understanding of a particular concept. May build up from current
3 Conceptual student understanding either toward a more sophisticated or generalizable strategy
through an incremental or gradual approach, or to address misconceptions, solidify
current strategy, or deepen mathematical understanding.
Teach student how to use a particular strategy or procedure without mention of
2 Procedural .
conceptual understanding.
General/

Superficial

Not directly or superficially related to student work in terms of the mathematics content

The examples shown in Figure 6 illustrate teacher responses at each level of the rubric in response to
Abby’s work. Abby used a drawing to represent the fractions, and while her reasoning is correct and
shows some understanding of part/whole concepts, it is not the most sophisticated method as it relies
on the drawing rather than fractional reasoning.

Figure 6. Instructional Decision Making: Sample Teacher Responses, Rubric Codes, and
Rationale from Grades 3-5 Fractions TASK

2/‘{:

I§ You put
W+ does not
make a whole

@ So the carton
I1s et Cull.

Prompt: Examine Abby's work. As a teacher, what would you do next? Please explain your rationale

for the steps you suggest.

Score Teacher Response Explanation
| would first ask Abby to look at her representation of 1/3 and ask her
to explain how it is indeed 1/3. Abby needs to understand that the
circle must be divided into 3 equal parts. Next, | would ask how can

3 she prove it does not make one whole when it is added to one half. |
would guide her in seeing that 1/3 (a whole divided into 3 equal parts)
is less than one whole divided into 2 equal parts and, therefore, when
added to 1/2, it could not equal one whole.

2 Abby would be directed into writing fractions, determining a common  This response is

This response is
conceptual because it
focuses on strengthening
Abby’s understanding of
the concepts of part/whole
and magnitude.
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denominator, and making equivalent fractions and solving the procedural, focusing on

problem. teaching Abby about a
specific procedure not
based on her
understanding.
This is a general

1 Abby should practice to enrich her understanding. instructional response and

contains no specifics.

We further clarified this rubric by presenting it to raters in the form of a checklist with specific examples
to help guide them in their decision making, as shown in Table 10.

Table 10. Detailed Rubric for Instructional Decision Making

To what extent is the instructional response described based upon the student’s thinking and

understanding? (Check one.)

O General/Superficial (Not directly or superficially related to student work in terms of the mathematics
content)
* Teach or re-teach the general topic (e.g., proportions, word problems).
*  Provide enrichment.
* Provide remediation or one-on-one tutoring.
*  Work on explanation or have student explain.
* Askstudent to do it another way or double check work.
* Word problem interpretation (re-read the problem, work on word problems).
U Procedural (Teach a particular strategy or procedure without mention of conceptual understanding)
* Show student how to use a specific strategy or procedure
*  Practice specific skills or sub-skills.
* Correct a misconception or explain/show why student’s strategy or thinking is wrong.
* Help student move away from particular strategy or model (counting fingers, drawing pictures).
U Conceptual (Help student develop strategy or mathematical meaning)
* Help student see flaw in thinking/reasoning or correct misconception through questioning or
explanation.
*  Ask questions to get more information about student’s conceptual understanding.
* Develop conceptual understanding of a particular concept through representations (drawings,
manipulatives).
* Develop conceptual understanding of a related concept.

* Relate current understanding to new understanding.
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Training TASK Raters

Raters for each of the six TASKs were trained by the TASK developers during Summer 2012. Fifteen
mathematics educators were trained to code and score the TASKs in three half-day training sessions
tailored to the content of the particular TASK they would be responsible for coding. The raters included
experienced mathematics teachers and coaches from school districts in New Jersey, New York, and
Pennsylvania and CPRE researchers with mathematics content expertise from the University of
Pennsylvania. For each grade band (i.e., K-2, 3-5, 6-8, and 9-11), two outside raters were trained along
by a CPRE researcher.

In the first training session, raters were introduced to the TASK and the conceptual work that underlay
its development. In the second and third sessions, they received focused training on one specific content
domain (i.e., addition, subtraction, fractions, proportions, algebra, and geometry) and were trained to
code for references to procedures and concepts particular to that domain in order to characterize the
instructional perspective of the respondent. Raters were also introduced to the online scoring system, in
which they recorded their observations about particular references to mathematics instruction that
were present in teachers’ written responses and then assigned a rubric score for each set of items. In
the online system, raters went through a batch of 10 responses, one question at a time. The teacher
response was presented at the top of the screen followed by the relevant rubrics. For the questions that
used a coding scheme, raters completed the checklist and were presented with a summary of their
selections before choosing a rubric score.

All raters went through 10 hours of on-site training and additional retraining as needed until reliability
was reached, as summarized in Appendix B. The on-site training began with an overview of all grade
levels, focused on getting to know the TASK instrument, the problems and solutions in each TASK, and
the content-specific coding schemes. Each grade-level group then received an additional five hours of
on-site training focused on the specific content of their assigned TASK.

During the subject-specific training (see Appendix B), we presented research findings on student
understanding of the content, common student errors or difficulties, and a simplified learning trajectory
such as the one shown for fractions in Figure 7. Examples of strategies that fit into the categories of this
trajectory were explored so that raters could understand them in terms of the development of
multiplicative thinking as well as the move from concrete to abstract thinking. For each question on the
TASK instrument, we also reviewed several examples from the pilot data of teacher responses at each
level of the rubric, explaining components in the responses that justified the score. We then gave each
rater a packet of five teacher responses to each prompt on the TASK, which were intentionally selected
to represent a range in levels according to our rubric. Each rater scored the responses independently,
and then convened to discuss and reach consensus on the codes and rubric scores for each respondent.
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Figure 7. Simplified Learning Trajectory for Grades 3-5 Fractions TASK Training

Multiplicative Thinking

Fractions as Proportional
- . Numbers or .
No.n Equal Equivalent " Reasoning
Fractional L . Quantities .
. Partitioning Fractions . (Ratio as
Strategies (Relational Operator)
Thinking)

Concrete to Abstract Thinking

After completing the training, the raters were provided with a set of 20 TASK responses to code via the
online system. Approximately 10 days later, they participated in facilitated discussions to examine their
agreement and calibrate their scoring with each other. The CPRE trainer facilitated this meeting and
provided notes to the raters following the meeting. These notes were also used to revise our training
manual for future administration. After this training session, we continued to have the two outside
raters double score until they reached over 75% agreement on the rubric scores on all questions. If the
agreement was lower than 75%, we provided targeted retraining to recalibrate scoring. Depending on
the TASK, reaching 75% agreement took between one and three rounds of retraining.

Evidence of TASK Reliability and Validity

This section presents findings of three reliability studies of the TASK’s inter-rater reliability, internal
consistency, and test criterion validity. Each study provides a different type of validity evidence.
Collectively, the results speak to the construct validity of TASK performance as a meaningful measure of
mathematical instructional capability and provide evidence that suggests the scores from the
instrument are reliable and valid for the purposes of evaluating teachers’ learning trajectory-oriented
formative assessment capacity in mathematics. The three studies address the following questions:

Question #1 (Inter-rater Reliability): How consistent are the results of an assessment coded by different
raters? This question is addressed using evidence based on inter-rater reliability estimates.

Question #2 (Internal Consistency): How well does the instrument represent the domain of teacher
competencies to be measured? Evidence based on internal reliability statistics was used to address
this question.

Question #3 (Test Criterion Validity): How well does teacher performance on the assessment predict
performance on a criterion measure? Evidence based on the correlations of teachers’ TASK scores
with concurrent performance on a similar established assessment (the mathematical knowledge for
teaching, or MKT) was used to address this question.
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The design of the instrument and validation methods are also directly influenced by the Standards for
Educational and Psychological Testing (American Educational Research Association, American
Psychological Association, and National Council on Measurement in Education, 1999), which provides
strong guidelines for high-quality and technically sound assessments. Our methods of instrument
validation were chosen to demonstrate evidence of construct validity for consistency, internal structure,
and relation to other measures (American Educational Research Association et al., 1999; Cronbach &
Meehl, 1955; Kane, 2006). We are mindful that construct validation is a never-ending process wherein
new findings may lead to modifications of underlying conceptual models or new interpretation of the
measured constructs (Messick, 1980, 1988). Validity speaks to utility and appropriateness of results for a
specific purpose in a given context. We are validating the TASK as an observational snapshot of teachers’
ability to recognize and respond to students’ mathematical understanding.

Inter-Rater Reliability Study

To assess the consistency of TASK scores across multiple raters, we examined percent agreement based
on at least 40 double-coded TASKs per instrument (i.e., addition, subtraction, etc.). After raters
demonstrated at least 75% agreement on the last 40 TASKs, they were deemed reliable to individually
code and score teacher responses.

Data for these analyses were collected in Spring 2012. Analyses of all five of the TASKs suggest strong
evidence for inter-rater reliability. Not only was the raw coding of teacher responses highly consistent,
but final rubric scores showed high agreement. Inter-rater reliability on rubric scores, as measured by
direct agreement, was 75%. Overall inter-rater agreement was 75%. Agreement on rubric scores across
the five TASKs ranged from 69% to 83%, and agreement on items within each TASK ranged from 70% to
85%. Table 11 presents inter-rater statistics, including percent agreement by domain, overall agreement,
and Pearson correlation statistic.

Table 11. TASK Inter-Rater Reliability

Number Double Coded 40 40 40 40 70 230
Minimum, Maximum {1,4} {1,4} {1,4} {1,3} {1,3} {1,4}
Percent Agreement by Domain®
Concept Knowledge 88 75 85 98 69 83
Analysis of Student Thinking 86 64 66 91 88 79
Learning Trajectory Orientation 71 73 60 76 71 70
Instructional Decision Making 81 73 64 76 50 69
Overall Agreement 82 71 70 85 70 75
Overall Pearson r .64 .46 .60 73 .60 .63

® See Table 3 for explanation of these domains.
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Internal Consistency Study

To assess the internal consistency of some TASK domains, we used final coded data and estimated the
extent to which the rubric scores of Analysis of Student Thinking, Learning Trajectory Orientation, and
Instructional Decision Making prompts within theorized dimensions are related to each other through
item-total correlations and Cronbach’s alpha. Scale reliability analysis was performed overall and for
each TASK separately, based on the theorized scale structure. Neither ceiling nor floor effects were
observed although variation in scores did vary by subject (i.e., responses on the fractions TASK showed
the most variation). Each of the scales was shown to have moderate to high internal consistency with no
item-total correlation of less than 0.20 and scale reliability (coefficient alpha) for the domain scales
ranged from 0.56 to 0.68. These findings are only preliminary but indicate a moderate level of
association between rubric scores within domain, and suggest that alternative scale structures or
scoring methods may yield more reliable and meaningful ways of representing coded responses from
this instrument.

Test Criterion Validity Study

An instrument high in criterion-related validity assists test users in decisions of classification, selection,
and assessment. To examine the test criterion validity of TASK scores as a measure of formative
assessment capacity, we examined concurrent validity based on its statistical association with another
similar established measure, the MKT assessment (Hill, Schilling, & Ball, 2004; Schilling, Blunk, & Hill,
2007). The MKT assesses two strands of mathematical knowledge for teaching: Common Content
Knowledge and Specialized Content Knowledge (see Figure 3), or the kind of mathematical knowledge
that is particular to the teaching profession. Topics include methods for representing mathematical
content to students, identifying adequate mathematical explanations, and evaluating unusual solution
methods, all of which teachers need to teach mathematics effectively. ltems may ask teachers which
methods or answers are appropriate for solving a particular mathematics problem or which word
problems accurately describe certain equations. The MKT provides a strong criterion related to the
content of the TASK in that it is well constructed and validated, and is publicly available. The MKT is
most closely aligned with the TASK domains of Content Knowledge and Analysis of Student Thinking—
Mathematical Validity, but we expect that there would still be a positive, though smaller, relationship
with the other domains, for which no validated measures exist.

The MKT has multiple equivalent scaled forms available in the following areas (but not limited to):
number and operations; proportional reasoning; patterns, functions, and algebra; and geometry. Each
MKT form is a multiple-choice assessment of 25 to 30 items that fall under 13 to 18 super-stems. While
the assessments are content specific, they are not grade-level specific. For example, the Elementary
Number Concepts and Operations assessment can be administered to teachers in kindergarten through
sixth grade. Both the MKT and TASK are targeted to skills that students learn at certain grade levels.
Table 12 presents the specific TASK and MKT instrument used for six teacher groups in the pilot study.
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Table 12. Administration of TASK and MKT by Grade Band

Kindergarten—Grade 1 Addition Elementary Number Concepts and Operations
Grades 2-3° Subtraction Elementary Number Concepts and Operations
Grades 3-5° Fractions Elementary Number Concepts and Operations
Grades 6-8 Proportions Proportional Reasoning (Grades 4-8)

Grades 9-11 Algebra Middle School Patterns, Functions, and Algebra

Note: ®Grade 3 teachers were recruited for either instrument based on random sample.

We used paired teacher data across the five districts to correlate the TASK domain scores with the MKT
assessment. Teachers were administered the MKT in Summer 2012 after completing the TASK in May
2012. For the test criterion study, we recruited a sample of 486 teachers to complete one of the six
TASKs and the associated MKT as shown in Table 13.

Table 13. MKT Responses by TASK

TASK Responses MKT Responses

Addition (K-2) 247 89
Subtraction (Grades 2— 185 74
3)

Fractions (Grades 3-5) 376 134
Proportions (Grades 6— 292 108
8)

Algebra (Grades 9-11) 166 81
Total 1,266 486

Appendices B and C present descriptive statistics and correlation matrices for domain scales separately
for each TASK. We report the correlations between each of the six domains based on the full analytic
sample, while correlations between TASK domains and the MKT are based on the smaller sample of
teachers for whom we have paired data. We find that the statistical associations of MKT and TASK
domains reflect a low and moderate relationship and note that correlations are largest for TASK
domains that had the most variance.

There are several things worth noting in the correlation table in Appendix D. First, almost all of the
correlations are in a positive direction, as expected, with no significant negative correlations. Second, in
terms of magnitude, all correlations are below 0.5 (with only one exception of 0.56), indicating there are
no highly associated domains (Cohen, 1988). The direction and magnitude of the statistics across TASK
instruments suggests that the domains we are measuring are related, but also distinct, and that these
constructs are related but distinct from MKT. Across the subject areas, we observe that the largest
correlations are between the domains of Analysis of Student Thinking—Conceptual Understanding and
Learning Trajectory Orientation (both Ranking and Rationale). In addition, Analysis of Student Thinking—
Conceptual Understanding is more strongly correlated with each of the other domains, particularly in

grades K-5, suggesting that overlap exists between this domain and the other domains. However, it
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should also be noted that there is significant variation in the patterns between domains across TASKs, a
phenomenon we hope to explore through further research.
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Appendix A. Coding Scheme Checklist for TASK Grades 3-5
Fractions

General/Superficial

d a1
d a2

Fractions
General (e.g., "Problem Solving," "Reasoning," or "Number Sense")

ad G3 Sub-skills: Division, multiplication, addition, computation, or other sub-skills

Procedural (Focus is on how the problem is solved or what the student does)

u r Using a drawing or visual representation

u pr2 Finding fraction of a quantity numerically

a pr3 Finding or making equivalent fractions

a r4 Finding or using common denominators or least common denominators to add or compare
a ps5 Simplifying fractions

u p6 Adding 1/2 and 1/3 (without common denominators) and comparing to 1

u e Counting or calculation error

Conceptual

U CPPart/Whole

U CP1 Understanding
of fractions as a
relative quantity,
relationship of part
to whole

U CP2 Partitioning—
understanding of
the need for equal-
sized parts

U CP3 Understanding
of the meaning of
numerator and
denominator

U CP4 Understanding
the meaning of the
whole

U CP5 Use of a model
(area or set) to
represent
part/whole

U CD Partitioning/Division

a

CE Equivalence

CE1 Knowledge
and ability to make
use of basic
equivalencies

CE2 Understanding
of equivalent
fractions

CM Magnitude a
(Comparison/

Value)

CM1 Size of fraction U
pieces determined

by denominator

CM2 If the
numerator is less
than the
denominator, less
than one whole
CM3 Ability to
compare fraction
(or total) to one
whole

CM4 Comparison of
benchmark
fractions (1/2 and
1/3)

CO Operation/
Addition

CO1 In order to add
fractions, you need
a common
denominator or
reference

“Other” Codes (For Q2 Only)

0 01 Focuson student explanation or communication skills
0 02 Reference to scoring or grading student work
o o3 Teacher misunderstands student method or mathematics behind strategy—evidence of a

mathematical misconception
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Appendix B. TASK Rater Training Procedure

I. Initial On-Site Training
a. Common Training for All TASK Subjects (2 1/2 hours)
* Introduction to the TASK project.
*  Overview of the general rubric: Conceptual vs. procedural understanding, balance of
conceptual/procedural understanding in Common Core State Standards, levels of rubric.
*  Getting to know the instrument: In grade-level groups, participants solve problem and examine
ways students have solved the problem.
*  Getting to know the coding scheme: Participants examine coding scheme to locate their
observations and add further observations about student work.
* Introduction to online coding interface.

b. Grade-Level Training, Part 1 (2 1/2 hours)

*  Presentation on research findings on student understanding of concept, learning trajectory, and
common misconceptions.

¢ Review rubric and coding scheme for Concept Knowledge cluster. Review examples of
responses at each level.

*  Participants code training set (five responses).

¢ Discussion and calibration of coding.

* Repeat above for Analysis of Student Thinking cluster (four prompts).

c. Grade-Level Training, Part Il (2 1/2 hours)
* Review Learning Trajectory Orientation rationale rubric and examples of responses at each
level. Review learning trajectory.
*  Participants code training set (five responses).
¢ Discussion and calibration of coding.
* Repeat above process for Informed Instructional Decision Making cluster (two prompts).

Il. Off-Site: All raters triple code a set of 20 responses online

lll. On-Site Retraining Session (2 1/2 hours)
* Raters examine triple-coded data for each question and discuss disagreements in codes and
rubric scores to reach agreement. Facilitated by CPRE researcher.
* Notes are written and distributed to all raters following the meeting.

IV. Off-Site: Raters double code a set of 40 responses online

V. Follow-Up Retraining Sessions (1 hour): Scheduled as needed
* Raters discuss disagreements on questions where inter-rater reliability is less than 70%.
Facilitated by CPRE researcher.
* Notes are written and distributed to all raters following the meeting.

Note: Parts IV and V are repeated until overall reliability is over 75% at which point raters are considered
reliable and single code the remainder of the data.
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Appendix C. TASK Domain Statistics by Subject

Addition
Concept Knowledge
Analysis of Student Thinking—Mathematical Validity
Analysis of Student Thinking—Conceptual Understanding
Learning Trajectory Orientation—Ranking
Learning Trajectory Orientation—Rationale
Instructional Decision Making
Mathematical Knowledge for Teaching
Subtraction
Concept Knowledge
Analysis of Student Thinking—Mathematical Validity
Analysis of Student Thinking—Conceptual Understanding
Learning Trajectory Orientation—Ranking
Learning Trajectory Orientation—Rationale
Instructional Decision Making
Mathematical Knowledge for Teaching
Fractions
Concept Knowledge
Analysis of Student Thinking—Mathematical Validity
Analysis of Student Thinking—Conceptual Understanding
Learning Trajectory Orientation—Ranking
Learning Trajectory Orientation—Rationale
Instructional Decision Making
Mathematical Knowledge for Teaching
Proportion
Concept Knowledge
Analysis of Student Thinking—Mathematical Validity
Analysis of Student Thinking—Conceptual Understanding
Learning Trajectory Orientation—Ranking
Learning Trajectory Orientation—Rationale
Instructional Decision Making
Mathematical Knowledge for Teaching
Algebra
Concept Knowledge
Analysis of Student Thinking—Mathematical Validity
Analysis of Student Thinking—Conceptual Understanding
Learning Trajectory Orientation—Ranking
Learning Trajectory Orientation—Rationale
Instructional Decision Making
Mathematical Knowledge for Teaching

246
247
247
244
247
238

89

185
185
185
180
185
185

74

376
376
376
375
376
369
134

291
292
292
291
290
283
108

163
166
166
166
166
164

81

Mean

2.38
0.89
2.23
2.70
2.10
1.82
-0.34

2.45
0.92
2.47
2.78
2.16
1.82
0.00

2.59
0.84
2.67
2.27
1.93
1.76
0.28

1.80
0.87
1.85
1.96
1.80
1.69
0.34

2.40
0.80
2.10
3.22
2.00
1.94
0.53

Standard Minimum Maximum

Deviation

0.80
0.15
0.54
0.97
0.32
0.41
0.84

0.82
0.14
0.73
0.95
0.56
0.55
0.64

1.13
0.22
0.83
0.84
0.50
0.55
0.73

0.76
0.21
0.52
0.77
0.45
0.55
0.79

1.15
0.37
0.54
1.04
0.62
0.59
0.83

5.00
1.00
4.25
4.00
4.00
3.00
1.83

5.00
1.00
4.00
4.00
4.00
3.00
2.05

5.00
1.00
4.75
4.00
4.00
3.00
1.83

5.00
1.00
3.25
4.00
3.50
3.00
2.65

5.00
1.00
3.75
4.00
4.00
3.00
2.19
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Appendix D. Correlation Matrices

Task Domains MKT
Analysis of Analysis of
Student Student ) )
Thinking— Thinking— Learnlr.1g Tra!ectory Instructional
Concept Mathematical Conceptual Orientation Decision
Knowledge Validity Understanding Ranking Rationale Making
(CK) (AST-MV) (AST-CU) (LTO-R1) (LTO-R2) (IDM)
Addition
CK 1.00
AST-MV 0.05 1.00
AST-CU 0.19 0.18 1.00 .
LTO-R1 0.05 0.13 0.22 1.00 .
LTO-R2 0.07 0.03 0.33 0.08 1.00 .
IDM 0.06 0.06 0.16 0.16 0.13 1.00 .
MKT 0.00 0.14 0.33 0.03 0.23 0.24 1.00
Subtraction
CK 1.00
AST-MV 0.07 1.00
AST-CU 0.33 0.24 1.00
LTO-R1 0.04 0.16 0.20 1.00
LTO-R2 0.25 0.16 0.43 0.22 1.00
IDM 0.15 0.23 0.37 0.15 0.43 1.00
MKT 0.03 0.07 0.22 0.18 0.26 0.24 1.00
Fractions
CK 1.00
AST-MV 0.17 1.00
AST-CU 0.32 0.41 1.00
LTO-R1 0.16 0.34 0.33 1.00
LTO-R2 0.22 0.29 0.48 0.33 1.00
IDM 0.14 0.21 0.39 0.12 0.29 1.00
MKT 0.28 0.32 0.37 0.40 0.23 0.17 1.00
Proportion
CK 1.00
AST-MV 0.11 1.00
AST-CU 0.40 0.25 1.00
LTO-R1 0.07 0.24 0.05 1.00
LTO-R2 0.28 0.22 0.47 0.05 1.00
IDM 0.12 0.10 0.28 -0.04 0.14 1.00
MKT 0.24 0.26 0.35 -0.04 0.27 0.33 1.00
Algebra
CK 1.00
AST-MV 0.24 1.00
AST-CU 0.35 0.33 1.00
LTO-R1 0.10 0.05 0.08 1.00
LTO-R2 0.43 0.23 0.56 0.03 1.00
IDM 0.31 0.08 0.42 0.06 0.34 1.00
MKT 0.30 0.21 0.20 0.01 0.20 0.28 1.00

Note: Italicized correlations p<.05
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