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Criticality of Bitcoin Market
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In this paper, we present an analysis of the non-Gaussianity of the Bitcoin market, in which we focus
on the scale dependence of the variance A? estimated by fitting the Castaing equation to the detrended
price series. Our analysis showed scale invariance across a large range of scales in the years 2012—-2019,
which indicates that the Bitcoin market is in a critical state.
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1. Introduction

The stock market is said to be a complex sys-
tem, i.e., a system consisting of many subsystems
interacting in a manner, which proves predicting its
macroscopic features — based on its constituents —
difficult. One of the features of stock price or cur-
rency exchange dynamics is that it is impossible to
choose a characteristic scale of analysis. Conversely
to everyday experience in which average and nor-
mal distribution might work as a sufficient approx-
imation to predict qualities of many encountered
objects, price fluctuations of returns do not follow
this expectation [1]. They possess fractal proper-
ties [2], which means that the time-series is self-
similar across scales [3] and thus needs to be ana-
lyzed accordingly. What follows is that one might
expect to find critical phenomena and phase transi-
tions in the price index of financial assets.

Criticality and long-range correlation tend to
manifest themselves via scale invariance observed
in, e.g., different systems such as human heart
rate [4]. It was suggested that critical phenomena
or, in other words, the instability of the system in fi-
nances can be linked to market crashes [5]. Indeed,
it was demonstrated that 2 min S&P 500, which
exhibits scaling law in variance A2, entered a criti-
cal state manifested with data collapse during the
market crash in 1987 [6].

To investigate the link between criticality and
market crash more closely we decided to examine
the Bitcoin, which is known for its huge price swings
and speculative character [7]. We were able to show
scale invariance in the range of hours persisting from
2012 up to 2019, which suggests that Bitcoin might
be in a critical state not only during the crash.
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2. Methodology

In this work, we focus on the variance A of the
Bitcoin price in the sense which will be underlined
in this section. We start with the fact that the
distribution of returns is non-Gaussian with a key
property of a much larger probability of occurrence
of rare events — big differences in price to the
average value, which is commonly referred to as
“long/fat tails” [5]. Following the methodology used
for S&P 500 by Kiyono et al. [6], we assume phe-
nomenologically that increments can be modeled by
the random multiplicative process with increment
in the form of

AZ(t) = &(t) e, (1)

where s and w; are independent Gaussian random
variables with zero mean and variance o2 and A2
respectively. The w; models long tails and &g
are responsible for changing the sign of the incre-
ment. The standardized probability density func-
tion of A;Z has the form of
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The non-standardized version of Py 4 is called the
Castaing equation and is introduced to describe the
log-normal cascade model in a turbulent flow [§].
Parameter A controls the long tails and “sharp-
ness” of the peak of PDF (Fig. 1), whereas A is
introduced to fit non-normalized histograms. For
A = 0, the Castaing equation reduces to a Gaussian
function.
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Fig. 1. The Castaing function fitted to a non-
Gaussian sequence plotted in semi-log scale.
The non-Gaussian sequence was generated us-
ing (3), with A set to (from top to bottom)
1,0.8,0.6,0.4,0.2, N = 40000, bins = 12v/N.

To estimate the probability density function from
financial market data, we have removed the trend in
windows from the logarithm of the price and then,
for the detrended data, the log-returns were calcu-
lated. Standardized log-returns were used to esti-
mate Py 4 and subsequently A from the histograms.

2.1. Procedure of estimating A

Bitcoin one minute “close” price in USD {X (¢)}
from Bitstamp exchange'! is presented in Fig. 2.
Data is non-stationary and prior to analysis needs
to be detrended.

A full procedure is presented below.

1. NaNs (NaN — Not a Number) are filtered out
from data.

2. Data is divided into batches — approximately
one year, half year.

3. Detrending procedure:

e Logarithm of Bitcoin price {log(X(t))}
is divided into intervals of length 2s:
1+ s(k—1),s(k+ 1)], where s is the
window size and k is the index of the
window.

In each subinterval, a linear function is
fitted using linear regressionf?. Devia-
tion from the fitted function {X™*(¢)} is
used to calculate detrended log-returns
defined as: AsZ(t) = X*(t+s) — X*(¢).

4. Histogram:

e The standardization™ of {A,Z(¢)} is
performed for each scale s.

t1Downloaded from www.kaggle.com /gizemakbay /bitcoin-

historical-data-analysis.

t2The used functions come from Python library Scikit
learn.

3 numpy
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Fig. 2. Bitcoin prices between January 2012 and
August 2019. Rectangles under the curve represent
year and quarter-year batches. Colors correspond to
the ones in Figs. 4 and 5. The Oth batch is much
longer because of the missing data.

e The histogram is calculated’® with the
number of bins equal to the square root
of length of the time series multiplied
by 12 (this number was chosen based on
simulation, see Sect. 3.4 for details).

5. Fitting:

e To the calculated histograms Py 4 is fit-
ted using the least square method ™ with
two parameters A and A.

2.2. Activity periods

Additionally to variance analysis, we have inves-
tigated activity on the Bitcoin market based on the
volume transfer. In principle, there are no bound-
aries, when one can exchange Bitcoins, but one
might expect that, e.g., working hours of normal
stock exchanges might influence the trade of Bit-
coins. To check activity periods, we measured how
much volume was traded in specific periods T'. This
analysis showed in which time window most of the
transaction occurs and allowed to identify the ana-
log of the trading day for the Bitcoin market.

3. Results

3.1. Batches

First, we need to comment on the Oth batch,
which spans on a disproportionally larger time
frame than the rest. This and all the other differ-
ences in sizes of the batches to time frame are a re-
sult of the fact that the batches are chosen based
on the amount of non-NaN points, not based on the
exact time frames. This also means that the unit of
scales is only approximately in minutes.

t4]mfit
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3.2. Scale dependence of A

Results of the fitting procedure are presented us-
ing a histogram of detrended time-series from the
3rd batch. Based on the fit, we obtained the esti-
mate of the variance A\? for each scale. First, we
observe almost no change in the shape of the dis-
tributions and then a slow convergence to Gaussian
distribution for s > 300 (Fig. 3). Subsequently, we
check other batches by investigating the estimated
values of A? vs. scale-dependence (Figs. 4 and 5) for
both year and half-year batches. We find persistent
scale invariance for most of the batches. It is espe-
cially easy to see how remarkably different in quality
this result is, if we compare it with previous results
for S&P, based on which we would expect to see
a power-law relation here, but instead we observe
that Bitcoin has a characteristic scale. It is worth
noting that also for S&P, there seemed to be a small
region of saturation below s < 20, which might in-
dicate that for less speculative markets than Bit-
coin criticality also exists, but in much shorter
scales [6].

Additionally, we observe this invariance for some
of the curve clusters around different values of \2
(half-year batches 2,4,6,7 for A2 0.25 and
3,10,11,12 for A\? =~ 0.4).

Finally, we note that variance A% is converging
more slowly to Gaussian with respect to what was
found for S&P 500. Convergence below A? < 0.1 did
not occur for some of the batches for s = 8191 in
contrast to S&P 500 for which the same convergence
occurred for most of the batches at s ~ 200.

Observation of a consequent scale invariance in-
dicates that the Bitcoin market is in highly corre-
lated critical state in which there is a large prob-
ability of occurrence of rare events. Persistence of
non-Gaussianity for such a large scale range made
us investigate further what causes the correlation to
diminish after s > 300.

~
~

Fig. 3. The Castaing equation fitted to the 3rd
yearly batch using the least square method to the
histogram of A;Z(t) for 20 points equidistant in
a log scale range from 7 to 8192 (from top to
bottom). Note that A\* = 0.44 is independent
of scale till s 307, after which it starts to
converge to 0.
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Fig. 4. Variance A? as a function of scale estimated
from yearly batches. For s < 300, A? is not con-
verging to Gaussian and shows scale invariance with
exception of the Oth and 4th batches, which show
a gradual decrease. In the inset, the most promi-
nent examples of invariance are shown.
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Fig. 5. Similarly as in Fig. 4, in half-year batches

(with exception of the Oth, 1st, and 8th) we observe
invariance of A2 to scale. Invariance occurs for dif-
ferent values of A\? between 0.2 and 0.5.

3.3. Volume

Our analysis of volume exchange (Fig. 6) shows
that in a 6 h interval T, more than 90% of volume
has been traded (almost all for an 8 h interval). Pe-
riods in which most transactions occurred (Fig. 7)
are 15-21 (15-23) UTC, which corresponds to 11—
17 (11-19) EST. However, s = 300 corresponds to
a 5 h period, not 6 (8), but since the data con-
sists of a large number of NaNs, it is difficult to
estimate the exact time interval of scale invariance.
Most importantly, we want to emphasize here that
the scale invariance is linked to the activity on the
market throughout the day and might be a hint that
after s = 300 the Bitcoin market is starting to self-
regulate itself, which is manifested as a convergence
toward Gaussian.

3.4. Bin size optimization

The analysis of variance in this paper relies on
histograms. This measn that to get the best results,
the number of bins should be optimized.

To do so, we generated a non-Gaussian time series
sample with a given parameter A, corresponding to
the PDF Py 4 in (2) [9]:

2
:gie/\‘w A )

(3)
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Fig. 6. Maximum volume traded in each time pe-
riod T. Note that 90% of transactions occurs in 6 h
period and almost 100% of transaction occurs in 8 h
period.
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Fig. 7. Volume traded in each 6-h period. Note

that 90% of transactions occurred between 15 and
21 UTC.

where & and w; are normal variables. Based on
this time series, we fitted the Castaing equation and
estimated parameter A (see Fig. 1).

From this procedure, we could quantify the influ-
ence of two parameters: sample size and number of
bins on the average error (|]A — A|) and spread of A
measured with standard deviation from 10 samples.
We could then ask which parameters give us the de-
manded accuracy and precision, e.g., 0.1 and 0.1, re-
spectively. This is what is presented in Fig. 8, where
N stands for a sample size and V/Nb is equal to
the number of bins used to calculate the histogram.
From the plot, we can see that there is an area be-
tween N € (20000,40000) and b € (8,15), which
allows us to estimate A = 1 with accuracy and pre-
cision of 0.1.

4. Summary

In this work, we were able to show that variance
A? is independent of scale for s < 300 and that
variance converges much slower to Gaussian for Bit-
coin with respect to previously examined S&P 500.
This indicates strong correlations and criticality in
the market. Additionally, the analysis of volume
showed that the duration of the period of strong
correlations corresponds to the duration of the pe-
riod in which most transactions take place during
the day on the Bitcoin market.
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Fig. 8. Heatmap presents the combination of pa-
rameters, which allow (yellow) to estimate A = 1
with precision 0.1 and accuracy 0.1.

The most important question is whether S&P
from the years 1984-1995 is a reliable candidate for
comparisons with Bitcoin. The issue worth further
studying is how non-speculative markets are cur-
rently correlated. It might be the case that due to
the use of the internet in trading and ease of commu-
nication, herding behavior and rare events became
much more common.

We used Plotly [10] to plot our results. One can
find the library we used to produce all the calcula-
tions in our online repository [11].
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