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In this paper we develop a model for double cross-slip in fcc crystals. The double cross-slip mechanism is
demonstrated by a simulation of an overcoming of a particle exerting spherically symmetric repulsive stress field.
The cross-slip is treated as a deterministic, stress-controlled process. For the identification of the cross-slip, we use
a criterion based on evaluation of stresses exerted on a tip of a screw part of a dislocation resolved in the primary
plane and in the cross-slip plane. The motion of a dislocation is described by the geodesic curvature driven flow
on surfaces, and treated by means of the parametric approach. The results of numerical simulations are validated
by analytical calculations.
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1. Model

A typical family of crystallographic planes of slip sys-
tems of fcc metals, e.g. Cu, is of the {111} type. A
dislocation motion is planar, however, screw segments
can switch from one plane of the {111} type to another.
This effect is called the cross-slip. It is schematically il-
lustrated in the first three stages of Fig. 1a, where a dis-
location curve changes from (111) plane to (11̄1) plane
containing the same Burgers vector.

Fig. 1. Double cross-slip illustration. (a) Double cross-
slip mechanism, (b) cross-slip plane regularization.

Even though the cross-slip is a well known experimen-
tally verified process, it is still considered as an open
problem in the field of discrete dislocation dynamics
(DDD). So far, in most modeling efforts, the cross-slip
is considered as a stochastic, thermally-activated pro-
cess [1]. In the present paper, we use the approach based
on the stress criterion proposed by Kratochvíl and Pauš
in [2, 3], where the cross-slip is modeled as a determinis-
tic, stress driven process.
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The criterion presented in [2] compares the shear
stresses τp and τcs exerted on the tip of the screw part
of a dislocation resolved in the primary plane and the
cross-slip plane, respectively,

1. cross-slip occurs, if τcs > τp,

2. gliding in the primary plane continues, if τcs < τp,

where the stresses exerted on the tip are

τp = τobst + τapp, τcs = τ
(cs)
obst + τapp/3.

Here τobst represents the resolved shear stress exerted by
a particle provided the dislocation motion continues in
the primary slip plane, τapp is the applied shear stress re-
solved in the primary slip plane, and τ (cs)obst = τobst cos 71◦

is the shear stress resolved in the cross-slip plane exerted
by the particle.

The cross-slip plane is inclined with the angle ≈ 71◦

to the primary plane in agreement with the fcc lattice
configuration. In the evaluation of the applied stress τapp,
one has to take into account that in the case of (111)
plane, the angle between the loading axis and the normal
to the primary plane is π/4 and the angle between the
primary plane and the cross-slip plane is approximately
71◦. The derivation is obtained by means of the Schmidt
factor and can be found in the work [2].

In this paper we investigate the cross-slip effects caused
by the repulsive stress field exerted by a particle. This
serves as an illustrative example demonstrating the ex-
pected behavior of the proposed numerical algorithm.
Our approach to the cross-slip modeling is based on the
mathematical theory of curves moving along a smooth
surface of general shape given by the graph of a function
ϕ. For the technical details on this approach we refer
the reader to, e.g. [4]. However, the physical nature of
double cross-slip suggests that the given surface is piece-
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wise planar, i.e., non-smooth. To overcome this difficulty,
one has to regularize the surface as in Fig. 1b, where the
edges between the primary plane and the cross-slip plane
were replaced by rounded strips of the width 2ε.

In our understanding of the DDD modeling, disloca-
tions are represented by curves moving by the (mean)
curvature (see [5] or [6]) which schematically reads as

normal velocity = curvature + force.

For the dislocation Gt which is allowed to move along
several slip planes collectively denoted as Σ, we propose
the motion law generalized to the following form:

BVG = −TKG + F (1.1)
in Σ, where B is the drag coefficient, VG is the normal
velocity of the dislocation Gt (here the normal vector N
lies in the tangent space to Gt), T is the line tension, KG
is the geodesic curvature of Gt. The self-acting force gen-
erated by the dislocation is approximated by the product
TKG , where the line tension is calculated in accordance
with [7] as T ≈ E(e)(1−2ν+3 cos2(ξ)), where E(e) is the
dislocation edge energy, ν is the Poisson ratio, and ξ is
the angle between the tangent to the dislocation (which
lies in the slip plane Σ) and the Burgers vector b. No-
tice that the sign convention for the geodesic curvature
is in accordance with, e.g. [8]. The force term F denotes
the sum of all external forces per unit length acting on
dislocation Gt in the normal direction N . It is expressed
as F = bτres, where b is the magnitude of the Burgers
vector and τres is the resolved shear stress acting on Gt.
For the discussed model of double cross-slip, we consider
the following structure of the stress τres:

τres = τapp + τobst + τwall.

Here τwall is the stress exerted by walls of the channel of
persistent slip bands (PSB). The PSB channel typically
consists of areas with high density of clustered dipolar
loops — the channel walls, and areas with low density of
dislocations — the channel itself. Walls of the channel
are responsible for short-range interactions, and are sim-
ulated as the elastic field of infinite edge dipoles. Here
one wall of the PSB channel corresponds to one dipole.
When a dislocation moves in the PSB channel, the seg-
ments near the walls are attracted and then captured in
the elastic potential wells created by dipoles. For the
scope of our simulation, the PSB channel serves as a
convenient boundary for single dislocation curves and in
Ref. [9], approximate formulae for the stress τwall exerted
by a dipole are presented. The term τapp represents the
stress applied on the crystal. Our model explores the
stress-controlled regime, where τapp is considered uniform
in the PSB channel. It is known the stress controlled
regime slightly overestimates the reality (see [10]). We
still believe that this regime is suitable for the geodesic
method we use for modelling double cross-slip. The last
term τobst is the stress exerted by an obstacle. The ob-
stacle is represented by a particle exerting a spherically
symmetric repulsive stress acting on the dislocation. The
particle is positioned in the middle of the channel. The

criterion for the cross slip is evaluated at the tip of the
dislocation. Such a choice of the geometry enables the
model validation by analytical calculations. The repul-
sive stress at a position x exerted by the particle was
chosen nonlinear as

τobst =
τref√
r
MPa, (1.2)

where τref is the reference constant representing the
strength of the particle, and r is the distance between
the particle and the position x. This stress field forces
the dislocation to perform the double cross-slip according
to the mechanism illustrated in Fig. 1a. Then, the dislo-
cation continues gliding in the parallel primary plane.

2. Parametric method

Motion law (1.1) is treated by means of the direct
method (also known as the parametric or the Lagrangian
method — see [4]). The dislocation curve Gt evolv-
ing on a surface given by the graph of a smooth func-
tion ϕ is parametrized by means of the vectorial maping
X : Iu × It → R2 as the following:
Gt = {(X, ϕ(X))T : X ∈ Γt}, (2.1)

where X = X(u, t), Iu = [0, 1] is the fixed interval for
spatial parametrization, It = [0, Tmax] is the time inter-
val, and the planar curve Γt is the vertical projection of
Gt to the primary plane, i.e., Γt = Image(X(u, t)). In our
approach, we analyze the flow of surface curves Gt driven
by motion law (1.1) by means of the flow of projected pla-
nar curves Γt. In the following text, we summarize the
system of governing equations for the mapping X(u, t)
of Γt provided Gt glides in its normal direction to the
dislocation line in its glide plane by (1.1). For technical
details on this approach, we refer the reader to, e.g. [4, 8].

The geometrical quantities of our interest are given by
means of the parametrization X. The unit tangential
vector to Γt is expressed as tΓ = ∂uX/|∂uX|, and the
unit normal vector to Γt is given as nΓ = ∂uX

⊥/|∂uX⊥|,
where ⊥ is the symbol of perpendicularity. The vector
nΓ is oriented is such a way that det(nΓ , tΓ ) = 1 holds.
Using the Frenet formulae, the curvature κΓ of Γt is the
inner product

κΓ = − 1

|∂uX|
∂

∂u

(
∂uX

|∂uX|

)
· nΓ .

The normal velocity of Γt is then vΓ = ∂tX · nΓ .
Having a curve Gt on a surface given by the function

ϕ, we are able to express the unit tangent and normal
vectors T and N from the tangent space to Gt, and the
geodesic curvature KG of Gt in terms of the quantities
nΓ , tΓ , κΓ , and ∇ϕ (see [8]):

T =
(tΓ ,∇ϕ · tΓ )T√
1 + (∇ϕ · tΓ )2

, (2.2)

N = (2.3)
((1 + (∇ϕ · tΓ )2)nΓ − (∇ϕ · tΓ )(∇ϕ · nΓ )tΓ ,∇ϕ · nΓ )T√

(1 + |∇ϕ|2)(1 + (∇ϕ · tΓ )2)
,
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and the geodesic curvature KG of the curve Gt is given by

KG =
(1 + |∇ϕ|2)1/2κΓ − tTΓ∇

2ϕ tΓ
(1+|∇ϕ|2)1/2 (∇ϕ · nΓ )

(1 + (∇ϕ · tΓ )2)3/2
. (2.4)

Finally, the normal velocity of G is given as VG =
(∂tX, ϕ(X))T · N .

We assume that Γt is the vertical projection of the dis-
location Gt. Then, we seek for a geometric equation for
the normal velocity vΓ . One can easily derive (see [8])
the relation between the normal velocities VG and vΓ :

VG =

√
1 + |∇ϕ|2

1 + (∇ϕ · tΓ )2
vΓ .

Then, the dislocation Gt moves according (1.1) provided
the parametrization X of its vertical projection satisfies
the following system:

B∂tX = αT
1

|∂uX|
∂

∂u

(
∂uX

|∂uX|

)
+ (βT + γF)

∂uX
⊥

|∂uX|
,

α =
1

1 + (∇ϕ · tΓ )2
,

β =
(tTΓ∇2ϕtΓ )(∇ϕ · nΓ )

(1 + (∇ϕ · tΓ )2)(1 + |∇ϕ|2)
,

γ =

√
1 + (∇ϕ · tΓ )2

1 + |∇ϕ|2
. (2.5)

For the open dislocation curve, parametric equations
are accompanied by the fixed-ends boundary conditions
Xu=0 = X0, Xu=1 = X1 placed in two walls of the PSB
channel, and by the initial condition Xt=0 = Xini(u),
which is a straight line between the fixed endpoints.

Spatial discretization of system (2.5) is obtained by
the method of flowing finite volumes, described e.g., in
[9]. Then, the semi-implicit time stepping is used and
the resulting three-diagonal linear systems are solved by
means of the matrix factorization at each time step. To
ensure the smoothness of the surface along which the dis-
location Gt evolves, the sharp interfaces between primary
planes and the cross-slip plane are regularized by a small
parameter ε.

3. Computational results

In this section we present the results of our compu-
tational experiment demonstrating the double cross-slip
mechanism. The simulation was performed for fcc crystal
copper with idealised particle exerting spherically sym-
metric repulsive stress. The parameters of the simulation
are summarized in Table I.

In the numerical experiment, the particle is positioned
at (xobst, zobst, yobst)

T = (0, 64,−1)T nm of the xzy coor-
dinate system and the dislocation is surpassed with the
repulsive stress

τobst =
−240√

r
MPa,

where r is the distance from the particle. Notice that the
position of the particle slightly below the xz plane causes

TABLE IParameters of the simulation.

Parameter Value
Burgers vector magnitude b = 0.256 nm
dislocation edge energy E(e) = 2.35 nN
drag coefficient B = 1.0× 10−5 Pa s
channel width dc = 1200 nm
shear modulus µ = 42.1 GPa
Poisson ratio ν = 0.43

a non-symmetric configuration and thus the preferable
declination of the cross-slip plane will be upwards. If the
dislocation is driven by the applied stress τapp = 30 MPa,
the cross-slip criterion states that the dislocation shifts to
the cross-slip plane when τcs > τp, i.e., in the case when
the tip of the dislocation and the particle are closer than
r = 65.5 nm. When τcs ≤ τp, i.e., for greater distance
than 65.5 the dislocation returns to the primary plane
again. Thus, the expected position of the first cross-slip
is at the z-coordinate za = −1.49 nm.

Fig. 2. 1D projection of the dislocation tip and the pri-
mary plane and the cross-slip plane.

Fig. 3. Detail of the dislocation double cross-slip.

Let us assume for simplicity that the tip of the dis-
location moves exactly in the middle of the PSB chan-
nel and that the particle exerts spherically symmetric
repulsive stress field. Then, the cross-slip can be un-
derstood as a 1D problem where the motion of the tip
of the dislocation moves along a piece-wise linear graph
(see Fig. 2). Here points za and zb are the coordi-
nates of the first and second cross-slip, and the abscisse
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y(z) = tan(71◦)(z − za) represents the cross-slip plane.
The circle (z − zobst)

2 + (y − yobst)
2 = r2 represents the

boundary, where the cross-slip occurs. Thus, the position
of the second cross-slip zb = 11.78 nm.

According to our numerical simulation, the first and
the second cross-slip occurred in the coordinates za =
−1.47 nm and zb = 11.79 nm, which is in good agre-
ment with our analytical calculations. The inaccuracy
in the numerical results was caused by space and time
discretization. The graphical record of our computa-
tional experiment demonstrating the double cross-slip
phenomenon are shown in Fig. 3.

4. Conclusion

In this article we presented the novel approach to mod-
eling the double cross-slip considered as the determinis-
tic, stress controlled process caused by a particle exerting
spherically symmetric repulsive stress field. The method
was based on the description of moving surface curves
driven by the geodesic curvature, and the deterministic
cross-slip criterion comparing stresses resolved in the pri-
mary plane and in the cross-slip plane. The method was
tested on a simple scenario, where the coordinate of the
first and the second cross-slip were calculated analyti-
cally as –1.49 nm, and 11.78 nm, respectively. According
to the results of the numerical experiment, the coordi-
nates of both cross-slips are −1.47 nm and 11.79 nm,
respectively, which indicates a good agreement.
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