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The boson-fermion model, describing a mixture of fermions and bosons is analyzed on a small, two-site

lattice. The model includes all the on-site Coulomb-type interactions between bosons, between fermions and
between fermions and bosons. Additionally, the Hamiltonian includes a term that describes a conversion of a
pair of opposite-spin fermions into a boson and vice versa. We show how this conversion depends on the model
parameters.
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1. Introduction

A simple quantum mechanical problem of a particle in
a double-well potential becomes a non-trivial challenge
when the number of particles increases and a mixture of
fermions and bosons is allowed [1]. The problem can be
further complicated by taking into account the possibility
that a pair of fermions is converted into a boson and vice
versa [2]. Next, such dimers can be coupled to form an
array of double-well potentials, which would lead to an
extremely rich behavior.
The recent advances in laser technology allow for ex-

perimental realization of not only a single double-well
potential, but an array of coupled double-wells [3]. One-,
two- and three-dimensional double-well optical lattices
can be constructed [4�9]. When tunneling between the
local double-well potentials is negligible compared to tun-
neling inside the double-well potential, the system can be
described as an assemble of individual independent two-
-site lattices (dimers). Apart from the possibility of an
experimental realization in optical lattice, such a small
system usually does not constitute a very realistic system;
however, dimer calculations have an illustrious history for
providing insight into models [10�12].
The conversion of fermionic pairs into bosons has been

postulated in the �negative-U � scenario of the high-Tc

superconductivity [2]. More recently, it has been demon-
strated that the Feshbach resonance [13, 14] and the stim-
ulated Raman adiabatic passage process [15�17] can be
used to produce bosonic diatomic molecules in the ground
state by tightly binding fermionic atoms. The e�ciency
of the molecule production was proven to be strongly de-
pendent on the interactions present in the system [18, 19].
Therefore it is important to take all of them into ac-
count while studying the properties of the Fermi�Bose
mixtures.
In this paper we address the problem of mixtures of in-

teracting fermions and bosons in a double-well potential.
We start with a system described by the Fermi�Bose�
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Hubbard model on a single dimer. Next, we add to the
Hamiltonian the term responsible for an exchange of a
pair of opposite-spin fermions into a hard-core and soft-
-core boson. We study the ground state as a function of
the model parameters. In particular, we are interested in
the process of the fermion-boson exchange.

2. The fermion-boson model on a dimer

We start our analysis from a fermion-boson model in
a double-well potential. The system is described by the
following Hamiltonian:

H = −Jf

∑
σ=↑,↓

(
c†1σc2σ + c†2σc1σ

)
+ Uff

∑
i=1,2

nf
i↑n

f
i↓

−Jb

(
b†1b2 + b†2b1

)
+
Ubb

2

∑
i=1,2

nb
i

(
nb
i − 1

)
+Ubf

∑
i=1,2

nf
in

b
i + g

∑
i=1,2

(
b†i ci↑ci↓ + c†i↓c

†
i↑bi

)
. (1)

Here, c†iσ (ciσ) creates (annihilates) a spin-σ fermion at

lattice site i (i = 1, 2), b†i (bi) creates (annihilates) a
boson at lattice site i, Jf and Jb represent the hopping
integrals for fermions and bosons, respectively. In the
following we chose Jf = Jb to be the energy unit. All
the local interactions are taken into account: Uff , Ubb

and Ubf are on-site fermion�fermion, boson�boson, and
boson�fermion interactions, respectively. The �rst line
in Eq. (1) describes fermions, the second one bosons and
the third one the boson�fermion interaction. This inter-
species interaction includes the Coulomb interaction and
exchange processes converting pairs of itinerant opposite-
spin fermions into hard-core bosons and vice versa. The
coupling parameter g describes the magnitude of this pro-
cess. The number of fermions is limited to four by the
Pauli exclusion principle, but we allow up to 50 bosons.
If there is no exchange between fermions and bosons
(g = 0) the number of fermions N f and number of bosons
Nb are conserved separately. When g 6= 0, N f + 2Nb

is conserved. The Hamiltonian is numerically diagonal-
ized in the space spanned by vectors |i〉f ⊗ |j〉b, where
|i〉f ≡ |nf

1↑, n
f
1↓, n

f
2↑, n

f
2↓〉 (nf

iσ = 0, 1) describes the state

of the fermionic subsystem, whereas |j〉b = |nb
1 , n

b
2〉 are

the boson states with nb
1 = 0, . . . , Nb, nb

2 = Nb − nb
1 .
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The states of the entire system are described by the co-
e�cients αij :

|Ψ〉 =
∑
ij

αij |i〉f ⊗ |j〉b. (2)

2.1. The case of g = 0

We start our study in a limit where pairs of fermions
cannot be converted into bosons (g = 0). The system
has been diagonalized in subspaces with 0, 1, 2, 3 and 4
fermions and 4 bosons. In the absence of fermions the
ground state is entirely de�ned by the strength of the
inter-boson interaction Ubb. For Ubb > 0 in the ground
state there are N f/2 bosons at the left site and the same
number at the right site. In the limit of strong inter-
-boson repulsion we have

|ΨGS〉 = |Nb/2, Nb/2〉. (3)

However, if the interaction becomes su�ciently neg-
ative (Ubb . −1), the ground state evolves into the
Schrödinger cat state in the form of a superposition of
states with all bosons at the left site and all bosons at
the right site. In the limit of a strong attraction the
ground state is given by

|ΨGS〉 =
1√
2

(
|Nb, 0〉+ |0, Nb〉

)
. (4)

The evolution of the ground state as a function of Ubb is
shown in Fig. 1. This plot shows coe�cients |αj |2 de�ned
by

|Ψ〉 =
∑
j

αj |Nb − j, j〉. (5)

Since in this case we have no fermions, as opposed to the
general form given by Eq. (2), only one index enumerates
the basis vectors.
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Fig. 1. The ground state of a system composed of 4
interacting bosons as a function of the strength of the
interaction Ubb.

Next, we introduce fermions to the system. The
ground states for all allowed numbers of fermions are

presented in Fig. 2. Here, |αij |2 are presented for Uff = 2,
Ubb = 0.1 and Ubf = 4. In the case of spin degeneracy
only one of the equivalent states is presented.
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Fig. 2. The ground state of a system with 0 to 4
fermions and 4 bosons for Uff = 2, Ubb = 0.1, Ubf = 4.

In this �gure one can notice the obvious symmetry be-
tween the states with N f and 4 − N f fermions. What
is interesting is the di�erence between the states with
N f = 0 or 4 and states with N f = 1, 2 or 3. The
inter-boson interaction Ubb = 0.1 is too positive to pro-
duce the Schrödinger's cat state [20, 21] in the absence of
fermions. The same situation is for 4 fermions, when the
only con�guration allowed by the Pauli principle consists
of two fermions sitting at site 1 and the other two at site
2. Then, the Ubf just shifts all the energy levels. As can
be seen in the lowest and highest rows in Fig. 2, in this
case the ground state is peaked at nb

1 = nb
2 = 2.

On the other hand, the presence of 1, 2 or 3 fermions
leads to the cat-like states, where the ground state is a
superposition of a state with all bosons mostly at site
1 and fermion(s) at site 2 and a state with all bosons
mostly at site 2 and fermion(s) at site 1. This is espe-
cially visible for N f = 2, when the main contribution to
the ground state comes from an equal superposition of
clearly distinguishable components

|ΨGS〉 =

1√
2

(
|Θ, ↑↓〉f ⊗ |4, 0〉b + | ↑↓, Θ〉f ⊗ |0, 4〉b

)
. (6)

Such a con�guration in a bulk system would correspond
to a superposition of two equivalent chessboard states,
where fermions occupy one sublattice and bosons the
other one [22, 23].
A similar behavior can be observed for a larger num-

ber of bosons. Figure 3 shows the ground state for 0÷4
fermions and 50 bosons. Also in this case the cat-like na-
ture of the ground state is most pronounced for N f = 2.
Due to the number of bosons the boson-fermion repulsion
dominates over the inter-fermion repulsion, which leads
to ground-state con�gurations with both fermions sitting
at the same site.
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Fig. 3. The ground state of a system with 0 to 4
fermions and 50 bosons for Uff = 5, Ubb = 0.1, Ubf = 4.

2.2. The case of g 6= 0

For g 6= 0 a pair of opposite-spin fermions can be
changed into a boson and vice versa. Since the bosons
represent pairs of fermions, we assume them to be hard-
-core bosons. Due to the exchange process the Hamil-
tonian does not conserve the numbers of fermions and
bosons separately, only 2Nb +N f is conserved. We start
the study of the fermions-boson conversion with the case
of 2Nb +N f = 2. For a two-site lattice only in this case
the fermion�fermion interaction may lead to a non-trivial
e�ects in the absence of bosons: for N f = 1 there is no
fermion�fermion interaction, for N f = 3 one of the lattice
sites is singly occupied by a fermion, whereas the other
site is doubly occupied. It leads to a constant interac-
tion energy, independent of the con�guration of fermions.
Also, if 2 out of the 3 fermions are converted into a bo-
son, the remaining fermion does not have a partner to
interact with. For N f = 4 both the sites are doubly oc-
cupied and a �band insulator� is formed. This would be
also the case if all the four bosons are changed into a
pair of hard-core bosons. However, one should note that
for 2Nb + N f = 2 the boson�fermion and boson�boson
interactions are unimportant. The boson�boson interac-
tion Ubb is excluded by the assumption of the hard-core
nature of the bosons. In order to study the in�uence of
Ubf on the fermion�boson exchange one should take into
account the case of 2Nb +N f = 3.
Figure 4 shows the number of fermions and bosons as

a function of Uff under the constraint 2Nb + N f = 2.
It can be seen there that increasing inter-fermion re-
pulsion drives the system from fermion-dominated to-
wards boson-dominated. The states that contribute to
the ground state for di�erent values of Uff for g = 0.4 are
presented in Fig. 5.
Since the hopping integrals have been assumed to be

equal for bosons and fermions, in the absence of any in-
teraction it is energetically favorable to have two fermions
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Fig. 4. The number of hard-core bosons nb and the
number of fermions nf in the ground state as functions
of the inter-fermion interaction Uff for di�erent values
of the fermion�boson coupling g. Letters A, B and C in-
dicate points for which the decomposition of the ground
state is presented in Fig. 5.

than a single boson in the system. This situation is shown
in Fig. 5A. But then, the increasing repulsion starts to
suppress the fermion mobility, while the boson mobility
remains una�ected. As a result the fermions are gradu-
ally converted into a boson. Figure 5B shows an example
of such a situation. Finally, when the interaction is so
strong that the fermions are almost completely localized
(which corresponds to the Mott insulator state in a half-
-�lled bulk system), we have only a boson in the ground
state � see Fig. 5C. One should note that this is a cat-
-state similar to the state described by Eq. (4). Here,
however, there is no attractive inter-boson interaction.
In Fig. 4 we see that the fermion�boson conversion is

strongly dependent on the coupling g. For small g there
is a sharp change of the boson and fermion occupation
numbers at the threshold value of Uff . This is a remnant
of the g = 0 case, where N f and Nb are conserved inde-
pendently. For larger g the exchange process dominates
and even for Uff = 0 there is a signi�cant boson contri-
bution to the ground state. With increasing Uff this con-
tribution smoothly increases, diminishing the fermionic
component. Nevertheless, even in the regime of strong
inter-fermion repulsion a substantial fermion density is
generated by the exchange term.
The next case to study is 2Nb + N f = 4. For hard-

core bosons we have two limits: N f = 4, Nb = 0 and
N f = 0, Nb = 2 and both of them represent a band
insulator. Therefore, in these limiting cases the kinetic
energy is equal to zero. However, apart from them, a
con�guration with one boson and a pair of opposite-spin
fermions is possible. In this case both kinds of particles
can be itinerant and the inter-species on-site interaction
Ubf becomes meaningful. Fig. 6 shows the ground-state
boson and fermion occupation numbers as functions of
Uff for Ubf = 7.
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Fig. 5. The coe�cients |αij |2 [Eq. (2)] of the ground state for Uff =0 (A), 3 (B), and 8 (C). These parts correspond
to points marked by letters A, B and C in Fig. 4. In all cases g = 0.4 is assumed.
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Fig. 6. The same as in Fig. 4, but for 2Nb + N f = 4
and Ubf = 7.

Now, the critical value of the inter-fermion interaction,
at which the jump in the occupation numbers occurs for
g = 0, is Uff = 0. In the limiting cases of band insulators
the fermion�fermion interaction is the only factor that
determines the nature of the ground state. On the one
hand, if Uff < 0 the energy is minimized by the presence
of a maximum allowed number of fermions. On the other
hand, the energy increases with the number of fermions
for Uff > 0 and in this case there are only bosons in the
ground state. It is also possible that the kinetic energy
of the intermediate state with N f = 2 and Nb = 1 may
modify this picture, but the assumed relatively strong
boson�fermion repulsion (Ubf = 7) makes all the particles
localized in this state. Similarly to the case presented in
Fig. 4, for a �nite g the conversion of fermions into bosons
is a smoother function of Uff than for g = 0.

It is also possible to induce the fermion�boson con-
version by controlling the inter-boson interaction Ubb.
This interaction, however, can be introduced only for a
system with soft-core bosons. Then, the last case we
study is 2Nb +N f = 4, but without the single-occupancy
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Fig. 7. The boson and fermion occupation numbers as
functions of the strength of on-site interaction between
soft-core bosons Ubb. Uff = 0.5 and Ubf = 7 has been
assumed.

constraint for the bosons. Figure 7 shows the results for
Uff = 0.5 and Ubf = 7. According to the results pre-
sented in Fig. 6, for Uff > 0 in the absence of the inter-
-boson interaction (i.e., for Ubb = 0) the ground state
has a purely bosonic nature. Then, with increasing Ubb

the bosons are converted into fermions. In analogy to
the case of hard-core bosons, this process is abrupt for
g = 0 and smooth for g 6= 0. For a small g the num-
ber of bosons tends to 0 for a large Ubb. However, for
a su�ciently strong boson�fermion coupling g, there is
one boson and two opposite-spin fermions in the ground
state in the large-Ubb limit.

3. Summary and outlook

In conclusion, we have analyzed a two-component
model where fermions and bosons interact through both
on-site Coulomb-type interactions (boson�boson, boson�
fermion and fermion�fermion) and through a mechanism
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by which bosons decay in two fermions with opposite
spins and vice versa. The model, studied on a small,
two-site lattice, has been solved by exact diagonaliza-
tion of the Hamiltonian. We have demonstrated that
this model, even in the absence of the boson�fermion ex-
change (g = 0), may lead to Schrödinger-cat-like states.
For g 6= 0 we have shown how the process of the conver-
sion of fermions into bosons and vice versa depends on
the model parameters.
While the present results cannot be directly applied

to real systems in a double-well optical potential, they
can be easily generalized to a larger, experimentally ac-
cessible, number of bosons. Another extension, interest-
ing from experimental point of view, would be to take
into account the inter-dimer coupling. For a few coupled
dimers, exactly the same exact diagonalization approach
can be applied. In a case of a larger number of weakly
coupled dimers one can use the present method to �nd
the exact eigenstates of a single dimer and then use the
cluster perturbation theory to study an array of coupled
dimers [24, 25].
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