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We express the equivalent resistance between the origin (0, 0, 0) and any other lattice site (n1,n2,n3) in
an in�nite body centered cubic network consisting of identical resistors each of resistance R rationally in terms of
known values b0 and π. The equivalent resistance is then calculated. For large separations two asymptotic formulae
for the resistance are presented and some numerical results with analysis are given.
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1. Introduction

The lattice Green function (LGF) is a basic physical
term. Many quantities of interest in solid-state physics
can be expressed in terms of it. For example, statistical
model of ferromagnetism such as Ising model [1], Heisen-
berg model [2], spherical model [3], lattice dynamics [4],
random walk theory [5, 6], and band structure [7, 8].
In Economou's book [9] one can �nd an excellent intro-
duction to the LGF, where a review of the LGF of the
so-called tight-binding Hamiltonian (TBH) used for de-
scribing the electronic band structures of crystal lattices
is presented. The LGF de�ned in this paper is related
to the GF of the TBH. Many e�orts have been paid on
studying the LGF of cubic lattices [10�25].

The LGF for the bcc lattice has been expressed as a
sum of simple integrals of the complete elliptic integral
of the �rst kind [10], Morita and Horiguci [11] presented
formulae which are convenient for the evaluation of the
LGF for the face centered cubic (fcc), bcc and rectangular
lattices. These formulae involve the complete elliptic in-
tegral of the �rst kind with complex modulus. Morita [12]
derived a recurrence relation, which gives the values of
the LGF along the diagonal direction from a couple of
the elliptic integrals of the �rst and second kind for the
square lattice with discussions of how to apply the result
to the bcc lattice. Finally, Glasser and Boersma [23] ex-
pressed the values of the LGF of the bcc lattice rationally.
One can �nd more works in these works and references
within therein.

The calculation of the equivalent resistance in in�nite
networks is a basic problem in the electric circuit the-
ory. It is of extreme interest for physicists and electrical
engineers.
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There are mainly three approaches to solve such a
problem.
The �rst approach is a superposition of current dis-

tribution which has been used to calculate the e�ective
resistance between adjacent sites on in�nite networks
[26�28].
The second one employs mapping between random

walk and resistor-network problems as was carried out
by Jeng [29]. In his method he calculated the e�ec-
tive resistance between any two sites in an in�nite two-
-dimensional square lattice of unit resistors.
The third educational important method based on the

LGF of the lattices has been used in calculating the
equivalent resistance [30�38]. This method has been ap-
plied to both perfect and perturbed square, simple cubic
(sc) networks and recently to the fcc network.
The present work is organized as follows: In Sect. 2,

we brie�y introduce the basic formulae of interest for the
LGF of the bcc network. In Sect. 3, an application to
the LGF of the bcc network is applied to express the
equivalent resistance between the origin and the lattice
site (n1,n2,n3) in the in�nite bcc network rationally in
terms of some constants, and the asymptotic behavior for
the resistance is also investigated as the separation be-
tween the two sites goes to in�nity. Finally, we close this
paper (Sect. 4) with a discussion of the results obtained.

2. Basic de�nitions and preliminaries

The LGF for the bcc lattice appears in many areas
of physics (e.g., Ising model [1, 39, 40] Heisenberg model
[2, 41, 42], and spherical models [43�45]) and it is de�ned
as [13, 23]:

B(E;n1, n2, n3) =

1

π3

∫ π

0

∫ π

0

∫ π

0

cos(n1u) cos(n2v) cos(n3w)

E − cosu cos v cosw
dudvdw, (1)

where E ≥ 1, n1, n2 and n3 are either all even or all odd
integers.

(60)
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The LGF for the bcc lattice at the site (0, 0, 0) which
represents the origin of the lattice for E = 1 (i.e.,
B(1; 0, 0, 0) = b0) was of so interests in physics and it
was carried out �rst by Van Peijpe [46] and later on by
Watson [47] . They showed that

b0 = B(1; 0, 0, 0) =
4

π2

[
K

(
1√
2

)]2
=

Γ 4
(
1
4

)
4π3

= 1.3932039297, (2)

where K is the complete elliptic integral of the �rst kind,
and Γ is the gamma function.
In a recent work the LGF for the in�nite bcc lattice

has been expressed rationally as [23]:

B(1;n1, n2, n3) = σ1b0 +
σ2
π2b0

+ σ3, (3)

where, σ1, σ2 and σ3 are rational numbers.

3. Application: evaluation of the resistance

R(n1, n2, n3) in an in�nite bcc network

The aim of this section is to express the equivalent
resistance between the origin (0, 0, 0) and the lattice site
(n1,n2,n3) in the in�nite bcc network which is consisting
of identical resistors rationally in terms of b0 and π.
First of all, it has been shown that for a 3D in�nite

network consisting of identical resistors each of resis-
tance R, the equivalent resistance between the origin and
any other lattice site is [30]:

R(r) = 2[G(0)−G(r)], (4)

where r is the position vector of the lattices point, and
for a d-dimensional lattice it has the following form:

r = n1a1 + n2a2 + . . .+ ndad, (5)

where n1, n2, . . . , nd are integers, and a1, a2, . . . ,ad are
independent primitive translation vectors.
Also, the equivalent resistance between the origin and

any other lattice site can be expressed in an integral form
as [30]:

R(n1, n2, . . . , nd) = R

∫ π

−π

dx1
2π

. . .

∫ π

−π

dxd
2π

× 1− exp(in1x1 + in2x2 + . . .+ indxd)∑d
i=1(1− cosxi)

. (6)

On the other hand, the LGF for a 3D hypercube reads
as [30]:

G(n1, n2, . . . , nd) =

∫ π

−π

dx1
2π

. . .

∫ π

−π

dxd
2π

× exp(in1x1 + in2x2 + . . .+ indxd)

2
∑d
i=1(1− cosxi)

. (7)

For cubic lattices, d = 3. Then substituting d = 3 into
Eqs. (6) and (7) and comparing them with Eq. (4) one
gets

R(n1, n2, n3) = R [b0 −B(1;n1, n2, n3)] . (8)

Now making use of Eq. (3) and Eq. (8) one yields

R(n1, n2, n3)

R
= r1b0 +

r2
π2b0

+ r3, (9)

where r1 = 1 − σ1, r2 = −σ2 and r3 = −σ3 are ra-

tional numbers. These rational numbers, for the sites
from (0, 0, 0) to (8, 8, 8), can be gathered from ([13],
appendix A). In Table below we present these rational
numbers.
Based on the recurrence formula presented in ([13],

Eq. (5.8)), we have calculated additional rational values
for the sites from (9, 1, 1) to (10, 0, 0) and arranged them
in Table below.
Since the LGF is an even function (i.e.,

B(1;n1, n2, n3) = B(1;−n1,−n2,−n3)) and due to the
fact that the in�nite bcc network is pure and symmetric,
then as a result R(n1, n2, n3) = R(−n1,−n2,−n3).
Finally, it is interesting to study the asymptotic be-

havior of the equivalent resistance for large separation
between the origin (0, 0, 0) and any arbitrary lattice site
(n1,n2,n3).
The asymptotic form of B(1; 0, 0, n3), as n3 → ∞, is

given by [13]:

B(1, 0, 0, 2n3)

→ 1

πn3

(
1− 1

8n23
+

1

128n43
− 173

1024n63

)
. (10)

While, for large value of |n| =
√
n21 + n22 + n23 it has been

shown that [13] B(1;n2, n2, n3) has the following asymp-
totic formula:

B(1;n1, n2, n3)

≈ 2

π
|n|−1

[
1− 9

8
|n|−2 +

5

8
|n|−6

(
n41 + n42 + n43

)
+

15

4
|n|−6

(
n21n

2
2 + n22n

2
3 + n23n

2
1

) ]
. (11)

Inserting Eq. (10) and Eq. (11) into Eq. (8), one gets the
following two equations:

R(0, 0, 2n3)

R
→ b0 −

1

πn3

(
1− 1

8n23
+

1

128n43

− 173

1024n63

)
, (12)

R(n1, n2, n3)

R
→ b0 −

2

π
|n|−1

[
1− 9

8
|n|−2 +

5

8
|n|−6

× (n41 + n42 + n43)

− 15

4
|n|−6(n21n

2
2 + n22n

2
3 + n21n

2
3)

]
. (13)

The last asymptotic formula agrees with Eq. (12) for
n1 = 0, n2 = 0 and for n3 = 2n3. In addition, the
above two asymptotic formulae can be used to check the
results obtained in Table below. For example

R(8, 0, 0)

R
≈ 1.31425,

R(8, 8, 6)

R
≈ 1.34413,

R(8, 8, 8)

R
≈ 1.34778,

R(9, 9, 9)

R
≈ 1.35273,

R(10, 0, 0)

R
≈ 1.32986. (14)

From the above two asymptotic formulae, one can see
that as n3 →∞, or as |n| → ∞ then the resistance goes
to a �nite value (i.e., goes to b0).
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TABLE

Values for selected rational numbers r1, r2, r3 and R(n1, n2, n3) for sites (0, 0, 0) to (10, 0, 0).

(n1,n2,n3) r1 r2 r3 R(n1, n2, n3)/R

000 0 0 0 0

111 0 0 1 1.0000

002 1 −4 0 1.1023

022 0 16 0 1.16360

222 −3 −36 8 1.20228

113 2 −8 −1 1.20461

133 −4 80 1 1.24521

333 −18 −504 63 1.26877

004 8/9 0 0 1.23840

024 25/9 −36 0 1.25190

224 104/9 16 −16 1.26285

044 −112/9 256 0 1.28003

244 −407/9 444 32 1.28626

444 −360/9 −5376 448 1.30059

115 −2/9 8 1 1.27220

135 120/9 −224 −1 1.28558

335 810/9 920 −191 1.29564

155 −652/9 1392 1 1.30374

355 −4266/9 1192 575 1.30990

555 7650/9 −48840 2369 1.31934

006 1 −36/25 0 1.28848

026 −16/9 1296/25 0 1.29327

226 −155/9 444/25 24 1.29753

046 409/9 −21316/25 0 1.30487

246 1112/9 −42224/25 −48 1.30795

446 5481/9 379804/25 −1952 1.31569

066 −288 138384/25 0 1.31802

266 −5147/9 249596/25 72 1.31998

466 −165600/36 −563056/25 8048 1.32510

666 169317/9 −9083844/25 216 1.33175

117 20/9 −272/25 −1 1.30476

137 −808/36 10856/25 1 1.31055

337 −7616/36 −29888/25 383 1.31541

157 9480/36 −125320/25 −1 1.31962

357 12620/9 −275440/25 −1151 1.32317

557 20584/9 4757600/25 −17025 1.32903

177 −57824/36 769376/25 1 1.32912

377 −207128/36 1964312/25 2303 1.33153

577 −1396840/36 −2848376/5 95489 1.33566

777 9331056/36 −42996912/25 −236033 1.34058

008 1664/1764 0 0 1.31422

028 8164/1764 −1764/25 0 1.31641

228 48256/1764 −1648/25 −32 1.31845

048 −183136/1764 50176/25 0 1.32213

448 −3604288/1764 −737024/25 4992 1.32815

068 2029540/1764 −550564/25 0 1.32949

268 3543104/1764 −928496/25 −96 1.33070

468 28134948/1764 −664004/25 −20288 1.33398

668 −38421504/1764 49955984/25 −114976 1.33849

088 −12686080/1764 3444736/25 0 1.33687

288 −19609372/1764 5280412/25 128 1.33772

488 −115817696/1764 13932544/25 50944 1.34006

688 −436242204/1764 −216804644/25 975232 1.34340

888 5048578944/1764 165654528/25 −4469248 1.34721

119 −148/441 272/25 1 1.32369

139 17230/441 −17912/25 −1 1.32666

339 19368/49 30816/25 −639 1.3293

159 −306598/441 66616/5 1 1.33168

359 −1425500/441 177776/5 1919 1.33381

559 −6683968/441 −475264 55681 1.33751

179 41833/63 −3179392/25 −1 1.33754

379 1200158/63 −7803464/25 −3839 1.33914

579 10571410/63 4255912/5 −295681 1.34199

779 −678572 435693424/25 −322047 1.34551

199 −17834440/441 19368352/25 1 1.3433

399 −4533062/49 42106968/25 6399 1.34446

599 −335991178/441 10935752/5 902401 1.34657

799 −2907724/7 −2645823088/25 8275455 1.34938

999 1270018116/49 7998622128/25 −59378175 1.35244

0010 1 −196/225 0 1.32985
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4. Results and discussion

In this work we have expressed the equivalent resis-
tance between the origin (0, 0, 0) and any arbitrary lattice
site (n1,n2,n3) in an in�nite bcc network consisting of
identical resistors each of resistance R rationally in terms
of the two known values b0 and π. The rational number
r1, r2, and r3 presented in Eq. (14) were calculated using
some recurrence formulae. In Figs. 1 and 2 the equivalent
resistance is plotted against the lattice site.

Fig. 1. Resistance between the origin (0, 0, 0) and the
site (n, 0, 0) along [100] direction for bcc network.

Fig. 2. Resistance between the origin (0, 0, 0) and the
site (n,n,n) along [111] direction for bcc network.

Figure 1 shows the resistance in an in�nite bcc lat-
tice against the site (n1,n2,n3) along the [100] direction.
From this �gure it is clear that the resistance is symmet-
ric.
Figure 2 shows the resistance in an in�nite bcc lat-

tice against the site (n1,n2,n3) along the [111] direction.
From this �gure it is clear that the resistance is symmet-
ric.

The above �gures indicate that as the separation be-
tween the origin and the lattice site (n1,n2,n3) increases,
the equivalent resistance approaches a �nite value (i.e.,
b0 = 1.3932039297) as explained above.
It is worth mentioning that for other cubic networks

(i.e., sc and face centered cubic, fcc) the resistance ap-
proaches a �nite value for large separation between the
two sites [30, 33, 37], whereas for the in�nite square lat-
tice it goes to in�nity [30, 34].
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