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We perform a statistical analysis of emotionally annotated comments in two large online datasets, examining
chains of consecutive posts in the discussions. Using comparisons with randomised data we show that there is a
high level of correlation for the emotional content of messages.
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1. Introduction

Recent years have resulted in several well motivated
and carefully described studies coping with the problem
of opinion formation and its spreading [1]. This kind of
research usually aimed at qualitative descriptions of some
specific phenomena using both numerical and analytical
methods and touched problems like culture dissemination
[2], decision making [3], majority rule voting [4], social
impact [5] or community isolation [6–7]. The bottleneck
of such studies is always the lack of real-world data that
could sustain the presented theories. On the other hand,
the rapid and overwhelming development of the Inter-
net enables gathering information on its users and their
habits, spotting characteristic structures [8] and users’
behaviour [9]. However, all these works have not delved
into a crucial aspect of any analysis of new-born me-
dia like Internet blogs or forums: their emotional con-
tent. It is only lately that such analyses have started to
emerge [10–13]. In this paper we focus on the properties
of emotionally annotated chains of posts from two large
online datasets. We give strong evidence that the dis-
cussions cannot be treated as random insertions of com-
ments showing various measures of correlation with the
emotional content of posts. The paper is complementary
to recent analyses of cluster formation and the influence
of negative emotions on the properties of online discus-
sions [14–15].

2. Data description

The aim of this study was to find common proper-
ties of comment chains in Internet blogs. The analysis
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was performed on two datasets: Blogs and BBC Forums.
The BBC web site had a number of publicly-open mod-
erated Message Boards covering a wide variety of topics
that allow registered users to start their own discussions
and post comments on existing discussions. Our data
included discussions posted on the Religion and Ethics
and World/UK News message boards starting from the
launch of the website (July 2005 and June 2005 respec-
tively) until June 2009. The Blogs dataset is a subset of
the Blogs06 [16] collection of blog posts from 06/12/2005
to 21/02/2006. Only posts attracting more than 100
comments were extracted, as these apparently initialised
non-trivial discussions. Both datasets have similar struc-
tures. They consist of blog posts and corresponding in-
dexed comments possessing two values: positive proba-
bility Ppos and subjective probability Ppos (both are real
numbers between 0 and 1) forming a chain of comments
x1, x2, ..., xn−1, xN (N is the thread length). These val-
ues are the output of a sentiment analysis classifier that is
informed by previous studies on the extraction of emotion
from texts [17–18]. Sentiment analysis algorithms often
operate in stages as follows: (a) separating objective from
subjective texts, (b) predicting the polarity of the sub-
jective texts, and (c) detecting the sentiment target [19].
Our algorithm used supervised, machine-learning princi-
ples [20]. For this, we implemented an hierarchical exten-
sion of a standard Language Model (LM) classifier [20].
LM classifiers estimate the probability that a given docu-
ment belongs to each class and then select the class with
the highest probability. In our hierarchical extension a
document is first classified by the algorithm as objective
or subjective and then, for subjective texts a second-stage
classification determines the polarity as being either pos-
itive or negative. We used a manually annotated subset
of about 34,000 documents from the Blogs06 data set as
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a training corpus. The processed datasets have the fol-
lowing key properties: Blogs consists of 1,232 discussions
(threads) with 245,698 comments in total while the BBC
Forums have 97,946 threads with 2,474,781 comments.

3. Ppos and Psub distributions

Histograms of Ppos (Fig. 1) and Psub (Fig. 2) distri-
butions were created. One can see that in both cases we
could approximate the distributions by a bimodal distri-
bution. In both cases there are two dominating histogram
bars related to the extreme values 0 and 1. Therefore,
by looking on Fig. 1 one could say that statistically very
probably positive comments (later called positive) and
very probably negative comments (later called negative)
occur in threads in large quantities.

Fig. 1. Histograms of positive probability values Ppos

for Blogs (upper panel) and BBC Forum (bottom
panel).

4. Mean 〈Ppos〉 values in threads

For each thread a mean value 〈Ppos〉 was calculated
for all comments (Fig. 3). As a comparison, statistical
predictions were used and every comment in each thread
had its Ppos randomised, using the Ppos distribution (Fig.
1). One can see that in case of both datasets the plots
of mean value distributions have a similar, Gaussian-like
shape with a peak lower than the random predictions.
For both datasets there is a shift toward positive values,
which is much stronger in case of Blogs where the peak
is centred in Ppos = 1. This difference between data
statistics and statistical predictions of the shuffled data
indicates the presence of strong correlations for positive
comments in individual threads in the Blogs data. These

Fig. 2. Histograms of subjective probability values
Psub for Blogs (upper panel) and BBC Forum (bottom
panel).

Fig. 3. Average positive probability frequency f(Ppos)
for subjective comments in case of Blogs (upper panel)
and BBC Forum (bottom panel). Solid lines with
squares come from data and dotted lines are statisti-
cal predictions.

correlations can be effects of mutual affective interactions
between each thread’s participants.

Any sequence of neighbouring comments within a
thread which satsify the rule Psub ≥ T would form a
subjective cluster. For each threshold T an average sub-
jective cluster size 〈S(T )〉 was calculated (Fig. 4) and
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in order to make a reference thread shuffling and global
shuffling were used. Here, shuffling is understood as a
method of random reordering of the time series in order
to destroy any existing correlations within the data. It
can be performed at the thread level by randomising the i
index of the comment within a thread. Global shuffling is
a process of randomising data within the whole dataset.
In the case of the Blogs dataset the subjective attraction
has a large impact on the structure of every comment
chain (Fig. 4, upper panel). In comparison to global
shuffling, the structure of the original data had clusters
26-36 % greater in size. Another observation is be that in
comparison to thread shuffling this increase was about 7
%. It seems that some comment chains have a structure
that can be only destroyed by global shuffling - for ex-
ample, almost all posts being strongly positive or almost
all being strongly negative. The main difference between
the two datasets is that the BBC Forums are less clus-
tered (Fig. 4, bottom panel). This conclusion matches
the much weaker subjectivity attraction behaviour of this
dataset. The subjective probability in the nth comment
is less likely to induce a similar value in the next com-
ment, so it is common that more drastic shifts occur and
therefore the clusters break more often. As a consequence
of this, the mean cluster size is much smaller.

Fig. 4. Average size of the subjective comments cluster
〈S(T )〉 for a given threshold T for Blogs (upper panel)
and BBC Forums (bottom panel). Circles represent
data without shuffling, triangles come from shuffling at
the thread level and squares represent data from global
shuffling.

5. Correlations for subjective probabilities

In order to analyze the structure of comment grouping
a probability correlation ratio was defined

C(xn, xn−1) =
p(xn|xn−1)

p(xn)
, (1)

where p(xn|xn−1) is a conditional probability (here xn

stands for Psub(n)). The coefficient measures how the
(n − 1)-th state affects the n-th state in comparison to
simply picking the n-th state at random. For instance
C = 2 would mean that in the analysed data subset the
probability of getting xn if the previous comment was
xn−1 is two time greater than picking the xn value at
random. If the dataset is purely random in nature all
the correlation ratio values would be equal to C = 1.
The correlation ratio was calculated in the form of PMI
(Pointwise Mutual Information) as PMI = log C in case
of subjective probability for each pair in all threads (Fig.
5). One can see that in case of both datasets the dis-
tribution values increase while closing to the diagonal,
the xn−1 = xn line. This trend is very strong in case
of Blogs (Fig. 5, upper panel), the diagonal line is very
distinct. For the BBC Forums there is also a more cor-
related area of the diagonal which lies in range xn ≥ 0.7
and xn−1 ≥ 0.7.

Fig. 5. PMI for all pairs in all threads in case of
Psub for Blogs (upper panel) and BBC Forum (bottom
panel).

5.1 Mutual information

To quantify the amount of mutual dependence between
two consecutive comments in the thread one can also use
the concept of mutual information I(X, Y ) [21]. It is for-
mally defined for two discrete random variables X and Y
as

I(X,Y ) =
∑

y∈Y

∑

x∈X

p(x, y) log
p(x, y)

p(x)p(y)
, (2)

where p(x, y) is the joint probability function of X and Y
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while p(x) and p(y) are the marginal probability distribu-
tion functions of X and Y . In our case random variable
X is equivalent to Ppos (or Psub) value of n-th comment
while variable Y is Ppos (or Psub) value of (n − 1)-th
comment. The results of the calculations are shown in
Tables I and II. As one can see that the values obtained
for Blogs are significantly different than those for globally
reshuffled data. This suggests that n-th and (n − 1)-th
comments are not independent of each other. Similar
results for BBC Forums are less pronounced, which is
probably related to tree-like structure of those forums.

TABLE I
Mutual information for positive probabil-
ity value of subsequent comments. The
value of I(X, Y ) was calculated with about
0.05 error due to calculation method sim-
plifications

No shuffle Thread shuffle Global shuffle
Blogs BBC Blogs BBC Blogs BBC
4.53 0.41 3.57 0.26 0.05 0

TABLE II
Mutual information for subjective proba-
bility value of subsequent comments. The
value of I(X, Y ) was calculated with about
0.05 error due to calculation method sim-
plifications.

No shuffle Thread shuffle Global shuffle
Blogs BBC Blogs BBC Blogs BBC
1.68 0.51 1.20 0.19 0.04 0

6. Three-step correlations

All subjective positive pairs and negative pairs were
found in order to calculate the three-step correlation. A
Ppos = 0.1 binning was used so that negative comments
ranged Ppos ∈ [0, 0.1] and positive comments ranged
Ppos ∈ [0.9, 1.0]. Owing to this it is possible to extend
the previous definition of probability correlation relation
(1) by

C+(xn) =
p (xn|xn−1 ≥ 0.9, xn−2 ≥ 0.9)

p(xn)
(3)

C−(xn) =
p (xn|xn−1 ≤ 0.1, xn−2 ≤ 0.1)

p(xn)
, (4)

where xn again stands for Ppos(n). The quantities
C+(xn) and C−(xn) give the correlation that, after two
positive (negative) posts the next one will also be posi-
tive (negative). This approach (Fig. 6) was used in order
to probe the structure of subjective clusters.

Figure 6 indicates that positive comments tend to
group only with other positive comments. Negative com-
ment pairs are also positively (C−(xn) > 1) correlated
with occurrence of next negative comments, but they

Fig. 6. Three-step correlation functions C+ (circles)
and C− (squares) for Blogs (upper panel) and BBC Fo-
rums (bottom panel). Grey solid line indicates the level
of no correlations.

are also positively correlated with some unresolved com-
ments. A common rule for both datasets could be sug-
gested that subjective positive groups in thread tend to
repel other groups.

7. Conclusions

The analysis performed on the gathered data from In-
ternet blogs and forums shows definite signs of high cor-
relations with the emotional content of published com-
ments. The difference between the observed data and
simulated values taken from probability distributions
gives evidence of the existence of certain structures. First
of all issuing a specific emotion in a comment induces
with a large probability a similar emotion in the next one.
This phenomenon is also seen in case of three step cor-
relation analysis: given the fact that first two comments
are highly positive/negative, the third one has a tendency
to be very positive/negative as well. Such rules lead to
observations of long positive, negative or objective clus-
ters that far exceed the numbers that would have been
obtained if there had been no correlations in the data.
The obtained results are in agreement with our previ-
ous study showing the collective emotions and growth of
emotional clusters [14].
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