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Stimulated by the two-dimensional frustrated Heisenberg antiferromag-
net with first-, second-, and third-neighbor couplings (Ji—J2—J3 model) we
consider a corresponding three-parameter model with a long-range antifer-
romagnetic Lieb—Mattis interaction. This model can be solved exactly and
leads to a better understanding of the role of frustration in the J1-J>-Js
model. We calculate the correlations in the groundstate and consider their

_ finite size behavior. Furthermore we present the full thermodynamic phase
diagram. We find the possibility of a disordered phase at 7' = 0.

PACS numbers: 75.10.Jm

1. Introduction

The discovery of high-temperature superconductivity renewed an interest in
the study of quantum fluctuations in two-dimensional quantum antiferromagnets.
How the antiferromagnetic order of high-T. compounds is destabilized by doping
is an important problem in the theoretical understanding of high-T. supercon-
ductivity. One simple approach [1] simulating the effects of holes in lightly doped
CuO,, planes can be done by an effective two-dimensional spin-1/2 Heisenberg an-
tiferromagnet on a square lattice with frustrating interactions, eg. the J1—Jo—J3
model [2-4]

Hy—gye5,= 01 Z 8845, + J223i3i+62 + Jsz 8i8itss, J1,J2,J3>0. (1)

i,01 1,62 i,63

Here J; is the interaction between nearest neighbors and J, and J3 measure the
frustration strength between a given spin and its second and third neighbors,
respectively. Additionally, this model (1) is interesting per se as a model of a
helimagnet, where the frustration [5] can produce a spiral phase in some region of
parameter space.
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2. Model

The Ji~Ja—J3 model (1) can only be dealt with approximate methods, there-
fore we introduce a corresponding three-parameter model with the long-range
Lieb-Mattis interaction [6], which is exactly solvable. To do this we separate the
whole lattice in two sublattices A and B, which both are split in two further sub-
systems A, and By (y = 1,2), respectively. As a simplification of (1) we set the
interaction between every spin from A and every spin from B equal to J;, between
every spin from A(B); and A(B)2 equal to J, and between every spin within the
four subsystems A(B), equal to J3. We get corresponding to (1) a Lieb-Mattis
model

ﬁ = -%SASB + 1672

N T [SAlsAQ + SB], SBQ]

+8—]€£ Z 8;8; + E 8:8; + Z 8;8; + Z 8851 - (2)

5,j€EA; i,JEA2 i,j€B) i,J€EB2
i#i igJy i#y ity

The scaling factors cause the total strength of the J; interaction in (2) to be the
same as in the J3—Jo—J3 model. We use

SaB), = Z 8, Sam)= Z 8i = Sa(B), + SaB)2» (3)

. 1€ A(B)y i€A(B)

being the total-spin operator of the subsystems A(B), and the subsystem A, B,
respectively, and N — the total number of spins (s = 1/2) of the system. This
model can be solved exactly including the full thermodynamics. The operators
5% = (84 + SB)?, S, S%, Sf,_{, S%y and H all commute with each other. The
eigenvalues of (2) are

4
E= ﬁ{ —2(J2 — J3)[54,(Sa; + 1) + S4,(S4, + 1) + 55, (S, + 1)

+S8B,(SB, +1)] — (J1 — 2J2)[Sa(Sa + 1)+ SB(Sp + 1)] + /15(S + 1)} —6J3, (4)

where S, S4By and S4(p), denote the quantum numbers of S%, Sft( p) and Sf,( B),
respectively, with S € {|Sa — S|, Sa + S}, Sas) € [Sa), — Sam), |, Sa), +
Sa(m),] and Sa(my, € [0, N/8].

3. Ground state

A minimization of (4) with respect to the conditions for the quantum num-
bers allows us to determine a ground state phase diagram, which we present in
Fig. 1a. We find S = 0 and due to the symmetry S4 = Sp and Sx, = S4, =
SB, = SB, in all phases. In order to characterize the different phases we introduce
the staggered magnetization of the whole system ({(m2)) and of the two subsets A

and B ((m] 45))) |
4

N
(md) = 7 L (D (ss), (mlam) =gz X (<D i), (6)
Tij=1 i,jEA(B) '
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We have then (m?) > (=)0 and (m? Ay = (>)0 in the Néel (collinear) phase.
In the so-called paramagnetic phase botﬁ staggered magnetizations are zero. In
addition we introduce correlation functions (s;s;)4,5 and (8;8;)4,,4,, which de-
scribe the correlation between spins from A and B and from A; and Aj, respec-
tively. These definitions correspond to the correlations between nearest and second
neighbors in the J1-J;—J3 model. (8;8;) 4, describes the correlation between spins
within A; (corresponds to the third neighbor correlation). In Table we give the
correlations and magnetizations at 7' = 0 and their finite size behavior. Notice
that along the phase transition of the first order (i.e. at J; = J1/2) (s;3;)4,p and
(8i8;)4,,4, are equal, which indicates a canted phase.

TABLE

Zero temperature correlations and staggered magnetizations of (2) for arbitrary N

for different phases and along the phase transition of the first order (at J2 = 1J/1)
between the Néel and the collinear phase and at the tricritical point.
Phase (si8;Ya,8 | (8i8i)as,4, | (8i8)a, | (m3) (m? 4)
Nel “GHD | 1 [ 3 [ [+
collinear 0 — (% + :11.) % 0 % + %
paramagnet 0 0 —N—3_—4- 0 0
at Jp = %J 1
1 2 1 1 2 1 4
and Js< Ty |~(F+5%) | ~(z+s%)| 1 |mtsw| staw
min=n| -4 | o | gm | |
1-5 T L] 1.5 T T
a) b)
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Fig. 1. Ground state (a) and full thermodynamic (b) phase diagram of (2) in the
thermodynamic limit. The dashed/full lines denote phase transitions of first/second or-
der. The phases are labelled with respect to the structure of the corresponding J1—J2—J3
model.
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4. Thermodynamics

For the Lieb—Mattis model the saddle-point approximation becomes exact,
i.e. the partition function is given in the thermodynamic limit (N — o0) by its
largest term [7]. Due to the symmetry in the thermodynamic limit we can define
the normalized quantum numbers a = (8/N)S4(p), (with o € [0,1]) and § =
(4/N)SaB) (with 6 € [6, a]). We have to distinguish two cases and find

5= a at Jo < J1/2, with a = tanh [a(J1 —Jy = Js)/(kBT)] (6)
T ] 0 atJy> J1/2, with o = tanh[a(Js — J3)/(ksT)]

In Fig. 1b we present the thermodynamic phase diagram. Notice that J3 has the
same effect as the temperature, i.e. kgT'|j,=0 = kT + J35. The paramagnetic phase
at T'= 0 is characterized by the high degeneracy.

5. Summary

‘We have presented several exact results for a frustrated Lieb—Mattis model,
which is related to the J;—J2—J3 model on a square lattice (1). Varying the strength
of the interactions we get a Néel, a collinear and a high degenerate paramagnetic
disordered phase at T'= 0. We found that in this model the frustration by J3 has
the same effect as thermal fluctuations.
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