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Stimulated by the two-dimensional frustrated Heisenberg antiferromag-
net with first-, second-, and third-neighbor couplings (J1—J2—J3 model) we
consider a corresponding three-parameter model with a long-range antifer-
romagnetic Lieb—Mattis interaction. This model can be solved exactly and
leads to a better understanding of the role of frustration in the J1 — J2—J3
model. We calculate the correłations in the groundstate and consider their
finite size behavior. Furthermore we present the full thermodynamic phase
diagram. We find the possibility of a disordered phase at T = 0.

PACS numbers: 75.10.Jm

1. Introduction

The discovery of high-temperature superconductivity renewed an interest in
the study of quantum fluctuations in two-dimensional quantum antiferromagnets.
How the antiferromagnetic order of high-Tc, compounds is destabilized by doping
is an important problem in the theoretical understanding of high-Tc supercon-
ductivity. One simple approach [1] simulating the effects of holes in lightly doped
CuO2 planes can be done by an effective two-dimensional spin-1/2 Heisenberg an-
tiferromagnet on a square lattice with frustrating interactions, eg. the J1—J2—J3
model [2-4]

Here J1 is the interaction between nearest neighbors and J2 and J3 measure the
frustration strength between a given spin and its second and third neighbors,
respectively. Additionally, this model (1) is interesting per se as a model of a
helimagnet, where the frustration [5] can produce a spiral phase in some region of
parameter space.
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2. Model

The J1–J2–J3 model (1) can only be dealt with approximate methods, there-
fore we introduce a corresponding three-parameter model with the long-range
Lieb–Mattis interaction [6], which is exactly solvable. To do this we separate the
whole lattice in two sublattices A and B, which both are split in two further sub-
systems Aγ and Hy (γ = 1, 2), respectively. As a simplification of (1) we set the
interaction between every spin from A and every spin from B equal to J1, between
every spin from A(B) 1 and A(B)2 equal to J2 and between every spin within the
four subsystems A(B)γ equal to J3. We get corresponding to (1) a Lieb–Mattis
model

The scaling factors cause the total strength of the Ji interaction in (2) to be the
same as in the J1–J2–J3 model. We use

being the total-spin operator of the subsystems A(B)γ and the subsystem A, B,
respectively, and N — the total number of spins (s = 1/2) of the system. This
model can be solved exactly including the full thermodynamics. The operators
S2 = (SA + SB)2 , SA, SS, SA sly and H all commute with each other. The
eigenvalues of (2) are

3. Ground state

A minimization of (4) with respect to the conditions for the quantum num-
bers allows us to determine a ground state phase diagram, which we present in
Fig. la. We find S = O and due to the symmetry SA = SB and SA1 SA,
SB, = SB, in all phases. In order to characterize the different phases we introduce
the staggered magnetization of the whole system ((mi)) and of the two subsets A
and B ((m2,A(B)))
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We have then (m;) > (=)0 and (m2 A(B) = (>)0 in the Neel (collinear) phase.
In the so-called paramagnetic phase both staggered magnetizations are zero. In
addition we introduce correlation functions (sisj)A,B and (sisj)A1,A2, which de-
scribe the correlation between spins from A and B and from A1 and A2, respec-
tively. These definitions correspond to the correlations between nearest and second
neighbors in the J1-J2-J3 model. (sisj)A 1 describes the correlation between spins
within A1 (corresponds to the third neighbor correlation). In Table we give the
correlations and magnetizations at T = O and their finite size behavior. Notice
that along the phase transition of the first order (i.e. at J2 = J1/2) (sisj)A,B and
(sisj)A1,A2 are equal, which indicates a canted phase.

TABLE
Zero temperature correlations and staggered magnetizations of (2) for arbitrary N
for different phases and along the phase transition of the first order (at J2 = a J1 )

between the Néel and the collinear phase and at the tricritical point.

Fig. 1. Ground state (a) and full thermodynamic (b) phase diagram of (2) in the
thermodynamic limit. The dashed/full lines denote phase transitions of first/second or-
der. The phases are labelled with respect to the structure of the corresponding J1—J2—J3

model.
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4. Thermodynamics

For the Lieb—Mattis model the saddle-point approximation becomes exact,
i.e. the partition function is given in the thermodynamic limit (N —> co) by its
largest term [7]. Due to the symmetry in the thermodynamic limit we can define
the normalized quantum numbers α E (8/N)SA(B) y (with α E [0, 1]) and δ=
(4/N)SA(B) (with δ E [C, a]). We have to distinguish two cases and find

In Fig. lb we present the thermodynamic phase diagram. Notice that J3 has the
same effect as the temperature, i.e. kBT|J3=0 = kBT+ J3 . The paramagnetic phase
at T = O is characterized by the high degeneracy.

5. Summary

We have presented several exact results for a frustrated Lieb—Mattis model,
which is related to the J1—J2—J3 model on a square lattice (1). Varying the strength
of the interactions we get a Néel, a collinear and a high degenerate paramagnetic
disordered phase at T = 0. We found that in this model the frustration by J3 has
the same effect as thermal fluctuations.
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