Vol. 91 (1997) ACTA PHYSICA POLONICA A _ No. 2

Proceedings of the European Conference “Physics of Magnetism 96", Poznan 1996

NOVEL MECHANISM OF BIQUADRATIC
COUPLING IN MAGNETIC SUPERLATTICES
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Using the modified total energy approach of Bruno, we prove that for
the transition metal or rare-earth superlattices the additional scattering of
free electrons on magnetic ion multipole moment gives rise to ferroquadrupo-
lar biquadratic coupling between magnetic layers. We show that in this novel,
intrinsic mechanism, the anisotropy of the magnetoresistivity should mani-
fest itself.

PACS numbers: 75.70.Cn

The exchange coupling between ferromagnetic layers separated by a thin
non-magnetic, metallic spacer, is currently an object of intense investigation. The
recently discovered, m/2 coupling, between magnetizations of the neighbouring-
magnetic layers [1] added new interest to the problem [2]. Although the dominat-
ing mechanism for this exchange interaction has been unambiguously associated
with the Ruderman—Kittel-Kasuya-Yoshida (RKKY) interaction [3] the specific
mechanisms responsible for the entire coupling are not yet fully understood. There
are basically two strategies which have been used theoretically to study the inter- -
layer magnetic coupling: (i) total energy calculations and (ii) perturbative models.
Most applications of the latter approach follow earlier studies on the coupling be-
tween magnetic impurities in a host metal. The coupling of the ionic spin S, with
the itinerant electron spin ¢ is usually taken as the contact interaction [4]:

Hex = —2J8,06(r). (1)
The resulting interaction between magnetic ions is the RKKY-reminiscent, bilinear
in ionic spin operators, coupling. Very recently, within the perturbative approach,
there has been derived a new form of quadrupolar coupling of the magnetic ions
across the nonmagnetic, metallic spacer [5]. In case of non-s magnetic ion state,
along with the scattering due to dipolar contact interaction, there appears also
scattering of conduction electrons of quadrupolar moments. Kondo [6] has proved
that the interaction Vic(k) between conducting electrons and the quadrupoles is
given by
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where kt, oF, k~, and o~ denote the spin and wave vector of the impact and the
scattered electron, respectively. D is a constant which determines the strength of
the scattering potential. Using the scattering potential (2), within perturbative ap-
proach, we showed that the interaction between quadrupole moments of magnetic

ions (Q; and Q;) is given by [5]:

H(Rij) == ) Q4Q54%5 (1R: - R;), (3)
afys
where the Q£ denote the respective components of ionic quadrupole moment
1
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Similarly to the case of bilinear spin-spin exchange, the interaction (3) favours
the ferromagnetic (ferroquadrupolar) coupling [5]. The effective coupling between
the magnetic layers in a superlattice, may be obtained by summation of coupling
contributions from all moments within magnetic sheets [7]. This approach is justi-
fied, provided that the interionic coupling is isotropic, which does not hold in the
superlattice systems [8]. Moreover, in spite of the success of the perturbative meth-
ods in explaining the coupling between magnetic impurities in transition metals
(TM) or noble metals, one might be skeptical about the results of a perturbative
calculation of the coupling between two sheets of spins, especially when the spacer
layer has a propensity to be magnetic [10].

The aim of the paper is to extend the mechanism of interionic quadrupole
interaction in a layered system discussed in Ref. [5] on the superlattice. In view
of the discussion above, one should rely on total energy calculation. In the follow-
ing, we will modify the quantum well electron confinement approach of Bruno [3]
to describe the coupling due to the potential scattering (2). The model system
consists of a metallic spacer layer (paramagnetic), sandwiched between two po-
tential perturbations of height V4 and VB, generated by, adjacent to the spacer,
magnetic layers. The effective coupling between magnetic sheets across the spacer,
is associated with the multiple internal reflections of free electrons at the inter-
faces. The resulting “quantum interference” produces interlayer coupling, which
oscillates with a period directly related to the geometry of the system. As it was
shown by Bruno [3], the energy change due to the quantum interferences within
spacer is given by

9 €F . 1 €F .
AE = ;/ In|1-rarge?®+l|de F/d%"/ rarge’*tlde,  (5)
)
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where r4 and rp are the reflection amplitudes at both interfaces, L is the spacer
thickness L = (N + 1)d, with d being the thickness of one atomic plane in the
spacer, while k; denotes the perpendicular to interface component of the impact
electron wave vector. , _ '

Let us assume that the magnetizations of the ferromagnetic layers are at
angle & with respect to each other and determine the coupling energy AE (5) as
the function of 6. In the zeroth approximation, the reflection amplitude at the
interface A is given by [9]:

ra = AGEE, kD) (| VA B) = A BD) (| VA 4 VA ) =13 408, (6)
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where .

ra = Ak, k) (k7| Vit [BY) = Ak) (k7| Vit |kF) ()
gives us the contribution from isotropic potentlal as well as from exchange con-
tact interaction given by (1). The r3° is the reflection amplitude due to the
electron-quadrupole scattering (2). Let us focus our attention on this term. In
Eq. (7) we should account that wave vectors of the incident k* and reflected k~
electron fulfil the relation kT = k7 1. To account the effect of magnetization cant-
ing one must note that the scattering due to the quadrupolar potential (2) does
not depend on the spin of impact electron This means that the electron reflec-
tion amplitudes are equal, i.e. quT =r% B Thus, we must modify the approach of
Bruno [3], who exploits the spin dependence of the reflection amplitudes. For the
sake of simplicity, in the further considerations, we will replace the spin operators
Si in Eq. (2) by their average, i.e. the layer magnetization M. Provided that the
parallel to interface component of the impact electron wave vector makes angle ¢
with the in-plane magnetization of the A-th layer, in view of Eq. (2), we can write
the reflection amplitudes as

ri(8) ~ (b [VA| k') = Cs[Crcos? ¢+ Cy], (8)
where '
1 2
Ci = Mzkﬁ, Cs = -?:S(S +1) (2kﬁ - %Z—e) , 9)
.2
Cs = 2 (10)
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Similarly, assuming that magnetization of the second layer is parallel to the layer
and makes angle 6 with the magnetization of the other layer, we can write

r¥(@£0) ~ (k7| VE k) = Cs [Creos® (¢ £ 0) +Ca] . (11)
Integration over k) in Eq. (5) performed in polar coordinates (|ky|, ¢) gives us
2n
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0 0
Having the result (12), we can find that the energy change AE given by formula (5)

depends on 8 as
AE(0) = AE(cos®8) ~ Jo + Jacos? 0 + ... _ (13)
where the coefficient J;, which determines the dependence of total emergy on

cos? 0, can be interpreted as the biquadratic exchange integral [3]. In view of
Eqgs. (9) (13), J is given by the followmg expressmn

M k‘ dk' de—70— e (14)
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In view of the result (13), we can clalm that within the total energy calculation
method we proved that the scattering potential (2) is the source of biquadratic
exchange between magnetic layers.

Earlier approach to the problem under consideration was based on the per-
turbative method [5]. The resulting interionic quadrupole-interaction consists of up
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to six independent coupling parameters, which describe coupling between respec-
tive components of the ionic quadrupole moments. Application of these results to
determination of the effective biquadratic interaction between adjacent to spacer
_ magnetic layers, requires summation of coupling contributions from all moments
within magnetic sheets. Thus, the determination of the parameters of biquadratic
exchange which relies on perturbative approach suffers many difficulties.

In order to circumvent these problems, we devised a modification of the
“quantum interferences” method of Bruno [3], which allows us to calculate the
energy of the effective coupling as a function of angle § between magnetizations on
the neighbouring magnetic sheets. The approach presented above gives a precise,
quantitative relationship, between strength of the quadrupolar scattering potential
and the biquadratic exchange integral Jo. In view of the general properties of the
quantum interferences due to the electron confinement within spacer, the effective
biquadratic exchange integral oscillates with the spacer thickness [3]. Finally, let us_
mention that in the bulk systems the potential (2) is the source of the anisotropy of
magnetoresistivity [11], i.e. the effect often observed in the magnetic superlattices.
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