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The study of deformation in solids, fluid flow and magnetostatics are
all shown to possess a common genesis. In particular, this seemingly dis-
parate group of disciplines can be reduced to a study of line defects. For
solids, these defects are termed dislocations, whereas in fluid flow and mag-
netostatícs they take the form of fluid and magnetic vortices, respectively.
The mathematical formulations of all three are basically identical. For ex-
aniple, the Burgers vector, dislocation density, stress, and ełastic constants
associated with solids are replaced by circulation, vorticity, density and mo-
mentum, respectively in fluids, which in turn are replaced by current, current
density, permeability and induction, respectively in magnetostatics. It is then
possible to use various surface distributions of such defects to represent any
type of stress, vełocity or magnetic field. In this way, an externally stressed
solid is shown to be equivalent to flow through a pipe, which in turn is analo-
gous to a solenoid. Stiłl further, a stressed hole, flow about a sołid body and
the Meissner effect are all demonstrated to be mathematically equivalent.
This equivalence is underscored in a more basic manner by expressing the
elastic distortion, fluid velocity and magnetic field in terms of similar gauge
transformations.
PACS numbers: 61.70.Ga, 03.40.Gc, 41.10.Dq .

1. Introduction

The analogies that exist between various physical phenomena have often
allowed a deeper understanding of each to be obtained as would have occurred
by their study in isolation. For example, Burgers, [1] pioneering formulation of
dislocation theory was aided by its strong mathematical connections with fluid flow
about vortices. In a similar manner, Kröner's [2] elegant extension of Burgers, work
drew heavily on the close relationship between elastostatics and magnetostatics.
A review of this latter approach has been given by de Wit [3].

(543)



544 	 M.J. Marcinkowski

It has also been demonstrated that any state of elastic deformation can be
represented in terms of some suitable distribution of surface dislocations [4, 5].
This concept has been recently extended to show that any state of fluid motion
can be described by means of unique distributions of surface vortices [6]. The
logical application of these ideas to magnetostatics leads to the conclusion that
any type of magnetic field can be described in terms of various unique distribu-
tions of magnetic vortices. We are thus led to the remarkable conclusion that the
mechanical, fluid and electromagnetic behavior of matter can be reduced to the
study of various types of line defects, either dislocations or vortices. The purpose
of the present study is to develop these analogies in greater detail and to show
how they can be used to provide a deeper mathematical and physical insight into
the behavior of matter than has hitherto been available. In order to assist in a
clearer understanding of the physical concepts involved, the present treatment will
be limited to the linearized theory.

2. The nature of line defects

Whereas the elastic distortion 	 can be written in terms of the gradient of
the displacement ui , fluid velocity υi and magnetic intensity Hi may be expressed in
terms of the velocity and magnetic potentials ϕV and ϕM , respectively. In particular

In coordinate-free notation these become

The correspondence between the various quantities can be readily seen by reference
to Table I.

Quantities such as stress οij, momentum Pi , and induction Βi, can now
be defined in terms of βij υi and Hi , respectively by means of the following
constitutive relations:

where cijkl, p and μ are the elastic constants, density and permeability, respectively.
Suppose now that the divergences of the above quantities are set equal to zero,
leading to
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Equations (2.10), (2.11) and (2.12) insure that no sources or sinks of distortion,
fluid flow or magnetism, respectively, exist. Alternatively, (2.10) is the condition of
equilibrium, whereas (2.12) is the requirement that no free poles exist. Equations
(2.10-2.12), coupled with (2.1-2.3), give

or equivalently

These are simply Laplace's equations whose solutions in terms of rectangular or
polar coordinates are readily found to be
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Equation (2.19) can be recognized to be the displacement field associated with
a screw-type dislocation [7], whereas (2.20) and (2.21) are the potentials charac-
teristic of vortices [8]. They are illustrated in Fig. 1 from which it is clear that
the present treatment has been restricted to infinitely long line defects lying along
the z axis. The symbols b, Γ and Ι are termed the Burgers vector, circulation

and current. These are invariant quantities that characterize their respective line
defects. Combining (2.19-2.21), (2.7-2.9) and (2.1-2.3) yields

where (2.22-2.24) refer to polar coordinates, while (2.25-2.27) are in rectangular
coordinates. For a screw-type dislocation G in (2.25) and (2.22) replaces cijkl
in (2.7). In order not to obscure the inherent similarity between the three basic
defects considered herein, the more complex edge-type dislocation has not been
considered. Table I also shows that the ranks of the various quantities associated
with solids is one higher than that for fluids or magnetostatics. In particular, bi is
a vector whereas Γ and Ι are scalars.
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3. The connection between defect densities and vector potential

The total defect content Σ bi, Σ Γ and Σ Ι within any closed path can be
obtained from the following integrals:

where Stoke's theorem has been used to convert the line integrals to surface inte-
grals. The quantities αki, wi, and Ji are commonly referred to as the dislocation
density, vorticity and current density, respectively. They may be written as

where εijk are permutation symbols, or equivalently as

If the line integral in (3.1) is taken about a single quantized dislocation, it is
termed a Burgers circuit [9]. More generally, it may be referred to as a displacement
circuit, whereas those given in (3.2) and (3.3) can be termed velocity and magnetic
intensity circuits.

The condition that all of the line defects considered above form closed loops
is satisfied by setting the divergences of all the defect densities equal to zero, or

When applied to a single quantized. defect, Eqs. (3.10-3.12), (2.7-2.9) and
(2.10-2.12) lead to the picture shown in Fig. 2. In terms of Eqs. (3.7-3.9), α
may be considered to be the source of β, w the source of v and J the source of H.

The results given by (2.22-2.24) can be arrived at in an entirely different
manner by writing
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or equivalently

where Α is a tensor potential, which is more commonly referred to as a stress
function [3], while ΑV and ΑΜ are vector potentials associated with the fluid and
magnetic vortices, respectively. That the vector and tensor potentials are actual
physical quantities can be seen from the fact that they satisfy the following gauge
transformation [10]
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where ϕ is some arbitrary scalar function. It is clear that since  x ϕ = 0,
Eqs. (3.16-3.18) are left unaffected by this transformation. It follows from (2.7-2.9),
(3.7-3.9) and (3.16-3.18) that

Expanding the leftmost terms in the above relation [11], we obtain

Imposing the following gauge conditions on the above

leads to

The solutions to these Poisson type equations are readily found to be

where the position vector R = r — r'. The above volume integrals can be readily
integrated for infinitely long line defects lying along the z axis and give [12]

When the above are used in conjuction with Eqs. (3.13-3.15), results for σθz ,
Pθ and Βθ identical to those given by (2.22-2.24) are obtained. Although similar
in principle, the methods used to determine the tensor potential for an infinite
straight edge-type dislocation are somewhat more involved [3].

The results obtained thus far may be represented pictorially as shown in
Figs. 2 and 3. Figure 2, in particular, shows how the various defects are related to
their fields in accordance with (3.7-3.9). The fact that each forms closed loops sat-
isfies the divergence condition8 of (3.10-3.12) and (2.10-2.12). In a similar manner,
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Fig. 3 demonstrates how the vector potentials are related to their corresponding
fields according to (3.16-3.18). The closed loop nature of each is once again guar-
anteed by the vanishing of the divergences given in (3.28-3.30) and (2.10-2.12).

The remarkable similarity between Figs. 2 and 3 suggests that the former, in
view of (3.7-3.9), can be expressed in terms of the following gauge transformations,
similar to (3.19-3.21):

where (3.10-3.12) now become the gauge conditions for those transformations.
Equation (3.40) was first recognized by Golebiewska-Lasota [13] who drew her
analogy from (3.21).
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Comparison of Figs. 2 and 3 also allows us to write the following relations
along the lines given by (3.1-3.3)

where Σ Φ and Σ Φ', may be viewed as the total stress and momentum flux within
the circuit in analogy with the definition of magnetic flux, ΣΡ ΦM [14]. These three
quantities correspond to ΣΡ b, Σ Γ and Σ I, respectively, in (3.1-3.3).

4. Characteristics of line defects

The self energy per unit length of the various line defects considered thus far
can be written as [6]

where r 1 is on the order of the body dimensions containing the defect, while r 0
is the radius of the defect core. EDS consists entirely of elastic strain energy, ΕVS
of kinetic energy and EMS of magnetic energy. On the other hand, the interaction
energies between a pair of parallel line defects of opposite sign and spacing r are
given as follows:

If the three defects treated thus far are placed in external fields σij, Ρ, and Βi,
they experience the following forces per unit length:

or equivalently
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where t is a unit vector tangent to the dislocation line. Equation (4.10) is commonly
referred to as the Peach—Koehler force on a dislocation [15]. Fv, on the other hand,
is the well-known force arising from the Magnus effect responsible for lift in airfoils
[16]. The force FM is termed Αmpére's law, which is also the Lorentz force [14].

The self energies of circular loops can be readily obtained from (4.1-4.3) by
replacing r1 therein by R, the radius of the loop, followed by multiplication of each
expression by 2πR [6].

5. Irrotational fields in terms of surface line defect distributions

Somigliana's identity can be used to describe the displacement u at point  x'
within a finite region of an infinite body in terms of the following surface integral
along the boundary [17]

where Uij (x' - x) is the i-th component of the displacement at x' produced by a
unit force applied in the j-th direction at x, the socalled Green's tensor function.
The quantities tj (x) and Τij (x' — x) are the boundary tractions corresponding to
the displacements uj (x) and uij, respectively. It is a relatively simple matter to
extend (5.1) so as to include the cases of fluid flow and magnetostatics as follows

where, in the case of (5.2), ΦV(x' — x) is the velocity potential at x' produced
by a unit source at x on the boundary. The quantities tV(x) and TV(x' - x)
are the boundary sources corresponding to the potentials Φv(x) and TV(x' - x),
respectively. The terms in (5.3) are accounted for in a similar manner.

When the tractions, t^ (x), across the boundary are made continuous, (5.1)
reduces to [18, 19]

The above equation can now be viewed in terms of a surface dislocation whose
Burgers vector b(x) varies as a function of position, x, on the surface. Such an
entity has been termed a Somigliana dislocation [20]. Similarly, when the sources
tV(x) and tM(x) are continuous across the boundary, (5.2) and (5.3) reduce to
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where for the last three equations

where the plus and minus superscripts refer to opposite faces of the boundary. For
completeness, we may also write

where ni is the unit normal to the boundary. Eshelby [20, 21], on the basis of
(5.4), has concluded that knowledge of bi(x) completely determines the state of
deformation within the body. Since a Somigliana dislocation can be represented
in terms of a continous distribution of elementary line dislocations [22], it follows
that any state of deformation can be expressed in terms of such distributions.
Dislocations comprising such arrays have been termed surface dislocations [4, 5]
and provide a powerful method for the solution of any type of boundary value
problem.

Extending Eshelby's arguments to fluids and magnetostatics, it follows from
(5.5 and 5.6) that a knowledge of Γ(x) and I(x) completely determines the state of
fluid flow and magnetization, respectively, within a finite body. Carrying the anal-
ogy still further, it can be concluded that any state of fluid flow or magnetization
within a given boundary can be represented in terms of some unique distribution
of surface vortices. This has already been demonstrated in the case of fluids [6].

Utilization of the surface dislocation technique is most easily seen by refer-
ence to Fig. 4a, which shows a uniform array of surface vortices (dotted symbols)
of opposite sign on adjacent sides of a finite rectangular body. The vortices are
parallel to the z axis and are of infinite length. Consider first the limiting case
where the body is infinitely long and of width 2c. The dislocations, which have
Burgers vectors b and spacing h, in Fig. 4a may now be thought of as continu-
ously distributed with a constant dislocation density of b/h. Utilizing (2.25) the

σyzcomponent of stress for this array may be writtenas

where the first integral corresponds to the stress field of the leftmost wall in Fig. 4a,
while the second integral pertains to the rightmost wall. Upon integration, we
obtain
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which gives

A similar calculation for σxz shows that it vanishes everywhere. We conclude that
Fig. 4a in the case of dislocations corresponds to a stressed body under antiplane
strain.

When the line defects in Fig. 4a are taken to be fluid or magnetic vortices,
(2.26) and (2.27) can be used to write the counterparts of (5.13) as follows:
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in analogy with (5.15). Similarly, Px and Β vanish everywhere. Physically, (5.18)
represents uniform irrotational flow through an infinitely long channel. On the
other hand, (5.19) corresponds to the uniform magnetization within an infinitely
long solenoid.

When the length of the body in Fig. 4a becomes finite, the end effects become
important and analytic solutions for the various fields within the body are not
possible. Under these conditions, numerical techniques are readily available [5]. It
becomes instuctive now, however, to consider another limiting case wherein the
array of Fig. 4a is made planar, as depicted in Fig. 4b. Furthermore, it is assumed
that σyz =σfor y= 0between +cand—c.This condition is met by writing

where the barred integral sign denotes the Cauchy principal value. Its solution
yields the following dislocation distribution function [5, 23J

where

N being the total number of dislocations with Burgers vector b between 0 and α.
When the line defects in Fig. 4b are taken to be fluid and magnetic vortices,

(5.20) becomes

from which we obtain, analogous to (5.21)

where (5.22) again holds; however, N now represents the number of fluid and
magnetic vortices with circulation Γ and current I, respectively between 0 and a.

Suppose the fields —σ, -Ρ and —Β are superimposed on Fig. 4a. This trans-
forms (5.15), (5.18) and (5.19) into
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where (5.27) corresponds to a stressed hole [24], Eq. . (5.28) to flow past a rigid
body, and (5.29) to the expulsion of magnetic flux from a type I superconductor;
i.e., the Meissner effect [25].

If, in a similar manner, the fields —σ, —P and —B are superimposed on Fig.
4b, (5.20), (5.23) and (5.24) are transformed into

Equation (5.30) corresponds to an antiplane shear or mode III crack [5, 23],
Eq. (5.31) to a momentum concentration at some obstacle to fluid flow [26), while
Eq. (5.32) represents the magnetic flux concentration about a thin type I super-
conductor situated within a magnetic field.

All of the fields associated with Fig. 4 are termed irrotational. This means
that there are no defects within the interior of the body so that a, w and .1 given
by (3.7-3.9) vanish therein. For example, the field produced by σ generates purely
elastic distortions.

6. Rotational fields

As soon as a line defect is introduced into an irrotational field, it becomes
rotational. One of the simplest types of arrangement is the dipole shown by solid
symbols in Fig. 5. Under equilibrium conditions, the extension of the dipole can
be written as [6]

When dislocations are involved, as in (6.1), the result is plastic deformation. For-
mation of defect pairs leads to a reduction of σ, P and Β in their immediate
vicinity, resulting in a decrease of strain, kinetic and magnetic energies, respec-
tively. It also follows that the introduction of defects into a uniform field causes it
to become more chaotic and may be viewed as the basic ingredient of turbulence
[26]. This seems to be borne out by studies with helium H [27].
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7. Discussion

Dislocations, fluid vortices, as well as magnetic vortices have all been shown
to be mathematically identical with one another. In essence, they fall into the
category of line defects, interacting with one another, possessing a line tension,
a self energy and responding to an external field. Most important of all, when
arranged into certain arrays, they can be used to represent any type of irrotational
(defect-free) and rotational (defect-present) fields. It is these latter fields that
are the most important and at the same time present the most perplexing and
difficult problems. Their understanding lies at the heart of resolving the concept of
turbulence. In solids, turbulent behavior manifests itself during plastic deformation
and workhardening, in liquids by erratic and unpredictable flow at high Reynolds
numbers, while in large magnetic fields it appears in the form of energy dissipating
eddy currents. By presenting a unifled and detailed treatment of this broad class
of defects, it is hoped that a foundation has been laid for a clearer understanding
of these more difficult problems. Lastly, it is hoped that the present effort will spur
the search for line defects in an even broader class of fields, including gravitation.
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