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A group theoretical parametrization scheme of the bilinear orbit-lattice in-
teraction is presented. Using this scheme a general analytical form of this
interaction in the point-charge electrostatic model has been obtained. Based
on this general analytical form the second-order parameters of the bilinear
orbit-lattice interaction have been calculated for a tetrahedral complex. For
cubic complexes a microscopic interpretation of the G-tensor components in
the long-wavelength approximation of acoustic waves is given for the first
time. The presented scheme of parametrization as well as the method of cal-
culations of the interaction parameters may be extended to other models of
the crystal field.

PACS numbers: 71.70.Ch

1. Introduction

A magnetic ion placed in a diamagnetic crystal host is subjected to the
electric field produced by lattice. In the simplest model of a crystal field the as-
sumption is made that the nuclear framework of the complex is stationary. This
static approach of the crystal field theory has been often used (see e.g. [1-4]) and
is widely known.

When the thermal crystalline vibrations or the acoustic waves are considered,
ion displacements from the equilibrium positions must be taken into account. These
displacements of ions positions modulate the crystal field acting on a magnetic
ion and change the crystal field energy. To account for these changes the crystal
field operator is expanded into a Taylor series in terms of normal (or symmetry)
coordinates, what can be schematically written as:

Vc=V(0)+V(1)+V(2)+..., 	 (1.1)

(107)
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where 17(0) is the static crystal field Hamiltonian with ligands at equilibrium posi-
tions, v(1) is called the orbit-lattice interaction and is linearly dependent on the
deformation [5-9], V/(2) is a term bilinear in the deformation, etc. (from the ma-
thematical point of view the V( 2) can be either the bilinear form or the quadratic
form).

As the bilinear term will be the main subject of our further considerations,
let us give its explicit form:

where Q 6,0, is the normal coordinate transforming according to the λ-th row of the
irreducible representation A of a point-group (say G) of the magnetic ion placed in
a crystal field, and (5 is the repetition index of this representation. Here ]0 indicates
that quantities should be evaluated for equilibrium positions of the paramagnetic
cluster.

The term (1.2) will be called the bilinear (with deformation) orbit-lattice
interaction analogously with the orbit-lattice interaction v(1) which is linearly
dependent on the deformation.

Depending on definition of a "crystal field" potential, the bilinear orbit-lattice
interaction may play an important role in many specific physical situations. For
example in molecular approach, the quadratic vibronic constants [10] being the
matrix elements of the ∂²Vc/Qδдλ∂δ'д'λ'  operator are introduced as the molec-
ular dynamic structure parameters. As yet another example consider an magnetic
ion subjected to the crystal field modulated by lattice vibrations [5, 6]. In this par-
ticular case the bilinear orbit-lattice interaction is responsible for such important
twophonon phenomena as the spin-lattice relaxation [9, 11] and the dynamical
Jahn-Teller effect [12].

Despite an obvious importance of the bilinear orbit-lattice interaction in
molecular physics and in solid state physics, a marked progress in its theory —
particularly in microscopic formulation — has not been achieved yet. We believe
this paper opens a possible way to develop a theory of that type.

In the first place we consider a group-theoretical approach to the problem of
parametrization of the bilinear orbit-lattice interaction based on previously devel-
oped scheme [13] of the dynamic crystal field Hamiltonian. Classifying the interac-
tion parameters according to the irreducible representations of a point-symmetry
group of the crystal field and expressing an interaction Hamiltonian in a form
appropriate to its transformation properties we create a general framework for
description, which is independent of the assumed crystal field model.

Based on the presented group-theoretical description and using the twocenter
expansion [14] of the dynamic crystal field Hamiltonian, a general analytical form
of the introduced parameters has been found for the point-charge electrostatic
model. The generality of this analytical form is understood in this sense that it is
valid for any point-symmetry of the crystal field and for any coordination of the
magnetic ion.

Analytical expressions for the discussed parameters allowed us to find out the
bilinear orbit-lattice interaction parameters for the tetrahedral complex and in the
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long-wavelength limit of acoustic waves for the eight-fold cubic coordination. For
both of these cases we were able for the first time to give microscopic interpretation
of the above mentioned interaction parameters.

2. Group-TheoreticaI approach to parametrization of the biIinear
orbit-lattice interaction

In order to parametrize the bilinear orbit-lattice interaction let us discuss
transformation properties of the expression (1.2) according to symmetry of a point
group G of the crystal fleld. Each element of this group acts on the product
QδAλQδ'A'λ' of the normal coordinates. The tensor (Kronecker) product of two
representations will give another representation, which will usually be reducible,
the term QδAλQδ'A'λ'  decomposing into components of each of the irreducible
spaces of the product space [15]:

where [:::] is the Clebsch-Gordan coefficient in Lulek notation [16], and aster-
isk designate complex conjugation. As a consequence of transformation (2.1) the
quantities Q(δA,δ'A)δA'λ span spaces for the irreducible representations Д with
δbeing the repetition index of this representation.

The second derivative with respect to normal coordinates which appear in
(1.2) is an explicit function of the electron coordinates and the elements of group
G are acting only on electron coordinates. Thus we may factorize these derivatives
in such a way, that

where r0, θ0,  are electron coordinates, and f is a scalar, real quantity. The aster-
isk by function g means complex conjugate so this function transforms according
to the Д  representation complex conjugated with Д .

This simple conclusion forms a group-theoretical base for parametrization of
the bilinear orbit-lattice interaction Hamiltonian. Now this Hamiltonian will take
the form:

where f is the interaction parameter, and g is an operator acting in the electron
space.

It should be stressed that the operator g Дλ is defined by the transformation
properties of quantities appearing on the left side of (2.2). So it may happen that
this operator will be a sum of the operators transforming in the same way, i.e.
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where f' is a scalar quantity and the repetition index numbers the operators g'
transforming in the same manner. If we are faced with such a situation it is suitable
to define the interaction parameters in the following way:

and rewrite the bilinear orbit—lattice coupling operators in the form:

If we make no assumption whatsoever concerning the nature of the crystal
field interaction, the Hamiltonian of the bilinear orbit—lattice interaction (2.3) or
(2.6) may be regarded as a purely phenomenological one. However, if an explicit
form of the crystal field potential Vc is known, the Hamiltonian and its parameters
may be found explicitly. This will be shown for a point-charge electrostatic model
of the crystal field in the next Section.

3. The theory of the bilinear orbit-lattice interaction

The dynamic Hamiltonian in a point-charge electrostatic model of the crystal
field has the form:

where Zl is the l-th ligand charge, Rl is a radius vector of the equilibrium position
of the l-th ligand, rl is the displacement vector for the l-th ligand, and r0 is a
radius vector of an electron (see Fig. 1 in Ref. [13]).

A general framework of parametrization of the Hamiltonian (3.1) has been
given earlier [13]. Applying that parametrization scheme and taking into account
results of the previous Section we find that the Hamiltonian (3.1) takes the form:

Similarity of structure of the Hamiltonian (3.2) and the expression (2.6) is
obvious. Only the repetition indices δ' and δ' appearing in these expressions need
further comments. Since 17( 2) is expanded in terms of the spherical harmonics of
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rank K, the index K quite naturally distinguishes bases transforming in the same
way but originating from different representations D(K) of the full rotation group.
On the other hand in decomposition of the representation D(K) on irreducible
representations of a point group of the paramagnetic complex some of these ir-
reducible representations may appear more than once. And just these repeating
themselves representations are distinguished by the index δ'. As a consequence a
pair of indices in (3.2) corresponds to the index δ' in (2.6)

Parameters of the bilinear coupling can be calculated by using the two-center
expansion [14] of the crystal field dynamic Hamiltonian in a manner similar to the
one used in calculation of the linear parameters of the orbit-lattice coupling [13].
Thus we get



Yutsis notation [17], and
of the equation:

are the decomposition coefficients defined by means
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where the summation over 1 corresponds to the summation over all ions producing
the electric field, [:::] are the Clebsch—Gordan coefficients for a rotational group in

Moreover [Д] is the dimension of Д .
Using the relation (3.5) and taking the normal coordinates from [13] and

the expansion coefficients and the Clebsch—Gordan coefficients for the cubic group
from [1], the second-order (K = 2) bilinear orbit-lattice coupling parameters for
a regular tetrahedron were calculated. We obtain:

4. Special cases of the bilinear Orbit—lattice coupling

4.1. The long-wavelength limit of acoustic waves in cubic complexes

In the long-wavelength limit the acoustic waves can be expressed in terms
of the strains. The three normal coordinates Q7, Q8, and Q9 from the nine ac-
tive normal coordinates for tetrahedral [18] or cubic [19] complex cannot be ex-
pressed in terms of the strains [18] and do not contribute to the long-wavelength
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acoustic phonons. The others six normal coordinates for the cubic complex are ex-
pressed in terms of the strains in the following way (instead of numbers 1, 2, ...6,
a group-theoretical labeling scheme was used for the normal coordinates):

where R is the metal-ligand distance, and

where i, j = x, y, z, and εij is a component of the strain tensor [19].
Interaction of a spin of the paramagnetic complex with the crystal defor-

mation field can be described in this particular case by the phenomenological
Hamiltonian of the form [20]:

where operators 0 and Ω are linear combinations of products of the spin oper-
ator components SiSj(i, j = x, y, z) [20] (the above Hamiltonian contains minor
corrections as compared to the Hamiltonian given by Koloskova).

Since the second-order spin Hamiltonian (4.3) was obtained by symmetry
considerations, the Hamiltonian of the orbit-lattice deformation field coupling is
established by replacing spin operators by the operators acting in the orbital states
spaces of an electron, because they have the same transformation properties. The
following substitutions for the operators:



ters G'ijk can be expressed by the parameters Next, the parameters

for a cubic system with the 8-fold coordination can be calculated
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and for the coupling parameters

have been made.
Of course, parameters G'ijk - similarly to Gijk - can be treated as purely

phenomenological parameters, but if an explicit form of the crystal field energy
operator is known, then these parameters can be fully calculated. According to the
presented microscopic theory of the bilinear orbit - lattice interaction, the parame-

from the parameters obtained for a tetrahedron and given by the equation (3.7).
Performing the suitable calculations we have obtained the following values of the
microscopic parameters G'i jk for the XY8 cubic cluster:

All of these parameters must be multiplied by the constant factor |Ze2 |r02/27R3 .

4.2. Zero cross terms cases

It is often stated that in case of a magnetic ion interacting with the crystal
field modulated by 1attice vibrations [5, 6] the terms containing products of the
normal coordinates Qδдλ∂δ'д'λ' , with Дλ ≠ Д'λ' are equal to zero [18, 20-22].
In that situation it is useful to modify the above expressions in such a way that
the quantity Qδд,δ'д')δдλdefined by equation (2.1) becomes an invariant. To
this end let us make in (2.1) and in other appropriate expressions the following
substitutions:

Since Q*δ'дλ transforms according to the representation A*, which is complex con-
jugated to the representation A, the quantity

is invariant under all operations of a point-group symmetry of the crystal field.
The Clebsch-Gordan coefficient equals (with the phase factor accuracy):

where [Д] is the dimension of the Д representation.
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5. Summary

In this paper a scheme of parametrization of the bilinear orbit-lattice cou-
pling has been presented. This scheme is based on group-theoretical analysis of
the orbit-lattice interaction operator and lead to an elegant and comprehensive
classification of the coupling parameters. The analytical form for magnitude of the
interaction parameters in the point-charge model has been derived. This allowed
us to calculate, in a relatively simple manner, the parameters A(2,K) (δЛ,δ'Л')δ'δЛof any
order in K and for any symmetry of the paramagnetic complex. Up to now this
was almost an impossible task requiring very complicated and time consuming
calculations.

The analytical form of the A(2,K) (δ

Л,

δ'Л') δ'δ

Л

parameters has been calculated in
the point-charge model. Therefore, the values of these parameters are a superposi-
tion of some terms each of which is proportional to the electric charge of a ligand
Zle. Only slight modifications would extend substantially the range of applica-
tions of the result obtained. For example, the replacement of the nominal charge
of a ligand by its effective charge is the operation frequenly used in the theory of
crystal field. This simple modification when carried out for the calculations pre-
sented above would lead us to a semiempirical model which should, in many cases,
improve the consistency between the result derived from theory and from experi-
ment. However, from the practical point of view it is most essential that the here
presented results allow the classiffication of the parameters describing the bilinear
orbit-lattice interaction in a simple and unique manner.
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