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We consider exchange couplings present in an effective Hamiltonian for α-RuCl3, known as the K-Γ
model. The material considered has a honeycomb lattice and is intended to be representative of the
Kitaev materials (which can realize the 2D Kitaev model). However, the behaviour of RuCl3 shows that
the exchange interactions of this material are not purely Kitaev-like, especially since it has antiferro-
magnetic order at low temperatures and at low intensities of an applied external magnetic field. Fitting
the data obtained from the measurements of the magnetotropic coefficient (thermodynamic coefficient
associated with magnetic anisotropy), reported in Nat. Phys. 17, 240 (2021), we estimate the values
of the exchange couplings of the effective Hamiltonian. The fits indicate that the Kitaev couplings are
subdominant to other exchange couplings.
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1. Introduction

Spin–orbit coupling (SOC) assisted (spin j = 1
2 )

Mott insulators, showing bond-directional exchange
interactions, are expected to exhibit unconven-
tional quantum magnetic phases, such as spin liq-
uids [1, 2] predicted by two-dimensional (2D) Ki-
taev model [3] on a honeycomb lattice. Putative
quantum spin liquids are dubbed as “Kitaev spin liq-
uids” (KSLs) [4–8] and materials that exhibit such
behaviour are called the Kitaev materials. Com-
pounds like honeycomb iridates and α-RuCl3 have
been identified as candidate Kitaev materials. The
hallmark feature of the Kitaev material is that the
Kitaev coupling is the dominant exchange coupling.
However, the behaviour of RuCl3 shows that the ex-
change interactions of the material are not purely
Kitaev-like. In this paper, we address the unre-
solved question of what possible exchange couplings
in α-RuCl3 [7–11] could be, for example, what are
the dominant terms in the effective spin Hamilto-
nian, and whether we can estimate the values of
these coupling constants.

At low energies, experiments [12–14] show the sig-
natures consistent with a zig-zag antiferromagnet
(AFM) background (also consistent with ab initio
calculations [9, 15, 16]), and at the same time in-
dicate the existence of an unconventional quantum
magnetic phase, which could be much sought after
KSL, induced by a finite magnetic field. Exact nu-
merical diagonalization methods investigating data

from dynamical spin structure factors, as well as
methods relating to the heat capacity measure-
ments [17, 18], found that off-diagonal interactions,
not Kitaev interactions, are dominant [19]. In turn,
other computational studies [7, 9, 10, 20] report that
Kitaev terms are dominant.

We focus on the results from the resonant torsion
magnetometry experiment [21] in which the mag-
netotropic coefficient k ≡ ∂2F

∂θ2 at temperature T
was measured. Here, F = −β−1 ln(Z) is the free
energy, β = 1/(kBT ), and θ is the angle between
the applied magnetic field B and the c-axis of the
crystal. Using a simple Hamiltonian with a domi-
nant paramagnetic term, we will show that we can
fit the data obtained from the measurements of the
magnetotropic coefficient, and the fits correspond
to the Kitaev terms being subdominant in the so-
called K-Γ model.

2. Model

Due to the presence of on-site SOC, the effective
magnetic field components along the spin projec-
tions are given by

B̃α ≡ BγDγα, (1)
where

[D] = A113×3 +

 0 B B
B 0 B
B B 0

 . (2)
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The form of [D] has been fixed by the C3 and C2 ro-
tation symmetries [22] of P3112, constraining it to
A and B as only two independent components (see
Appendix A). In the abc-coordinate system, [D] is
diagonalized to the form diag{ga, ga, gc}, where the
g-factors are given by

g̃a =
kBga
µB

, g̃c =
kBgc
µB

,

ga = A− B, gc = A+ 2B, (3)
such that kB = 1.38064852 × 10−23 J/K and
µB = 9.274× 10−24 J/T. The SOC forces the lead-
ing order paramagnetic term in our model Hamil-
tonian to be H0 = −

∑
α={x,y,z} B̃ασ

α
j , rather than

(−
∑
α={x,y,z}Bασ

α
j ). We notice that the Hamilto-

nian has the units of gµBσ · B, where σ — the
dimensionless spin- 12 vector operator, and gµBσ·B

kBT
is dimensionless because of the factors as e−βH .
Hence, A and B have units of [K/T].

Following the arguments above, the physics of
a honeycomb lattice, restricted to nearest-neighbor
interactions and subjected to the external magnetic
field B, can be captured by a Hamiltonian of the
form

H = H0 + V, (4)
where

H0 = −
∑

α={x,y,z}

B̃ασ
α
j , (5)

and
V =

∑
γ={x,y,z}

∑
〈jk〉γ−links

Jγαβσ
α
j σ

β
k . (6)

Now, H0 is the leading order part for the large B
and V is the subleading part. The second summa-
tion (6) runs over nearest-neighbour spins at sites j
and k, coupled by a bond along the γ = (x, y, z) di-
rection. Furthermore, Jγαβ is the coupling constant
(for a given value of α, β, and γ), σµj (µ = x, y, z) is
the Pauli spin matrix representing the spin- 12 oper-
ator on site j, projected along the µ-axis. The spins
are located on the vertices of the honeycomb lattice
and 〈jk〉 denotes the labels of the nearest-neighbour
spins. For a hexagonal lattice, there are three differ-
ent kinds of bonds that can be grouped according
to their alignments (see Fig. 3 of [3]). These are
vertical bonds (which we label as z-links), bonds
with positive slope (which we label as x-links), and
bonds with negative slope (which we label as y-
links). As a results, a given site j is connected to
three other sites by these three different types of
links, denoted by γ. In other words, the links are
not oriented along the 3D orthogonal Cartesian co-
ordinate directions, but each γ-value denotes the
orientation of the bond we are referring to.

The parameters Jγαβ are obtained from the K-Γ
model, where K stands for the Kitaev term of the 2D
Kitaev model [3], and Γ represents the off-diagonal
exchange interactions [7, 8, 10, 20], as follows

HK = κ

 ∑
〈j,k〉x−links

σxj σ
x
k +

∑
〈j,k〉y−links

σyj σ
y
k +

∑
〈j,k〉z−links

σzjσ
z
k

 , (7)

HΓ = Γ

 ∑
〈j,k〉x−links

(
σyj σ

z
k + σzjσ

y
k

)
+

∑
〈j,k〉y−links

(
σzjσ

x
k + σxj σ

z
k

)
+

∑
〈j,k〉z−links

(
σxj σ

y
k + σyj σ

x
k

)
+D

 ∑
〈j,k〉x-links

(
σyj σ

z
k − σzjσ

y
k

)
+

∑
〈j,k〉y−links

(
σzjσ

x
k − σxj σzk

)
+

∑
〈j,k〉z−links

(
σxj σ

y
k − σ

y
j σ

x
k

) . (8)

Here, κ is the strength of the Kitaev term, and
Γ represents the off-diagonal exchange interaction
strengths. The parameters Γ and D represent, re-
spectively, the symmetric and antisymmetric parts
of the off-diagonal terms.

If the trivial paramagnetic term H0 dominates
the system’s response to the external magnetic field,
we can perform a thermodynamic expansion of the
partition function [23], as reviewed in Appendix B.
Then, the partition function corrected to leading
order evaluates to

Z(T ) =
(
2 cosh(βB̃)

)2Nc
×

[
1 + βNc

∑
γ,α′,λ′

Jγα′ λ′
sinh(βB̃α′) sinh(βB̃λ′)

cosh2(βB̃)

]
,

(9)

where

B̃ =

√∑
α

B̃αB̃α (10)

and Nc is the number of unit cells (or half the num-
ber of honeycomb lattice sites) in the system. It
turns out that this simple model can indeed explain
the experimental data to a high degree of precision.

3. Fitting the data

According to some papers in the literature [9, 24],
the point-group symmetry of the Ru–Ru links is C2h

in the C/2m unit cell, and hence the antisymmet-
ric Dzyaloshinskii–Moriya (DM) exchange is zero.
Because spin is an axial vector, the non-zero anti-
symmetric part of Jγαβ is equivalent to P · (S × S)
term, where P is the polar vector. Therefore, to
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Fig. 1. Results of k versus θ computed from our
theoretical model, where the orange curve repre-
sents the one obtained with the best-fit parameters
for the (T = 20 K, B = 30 T) data set, whereas the
dotted red curve has been drawn using those same
parameters, except that we have set D = 0. This
clearly shows that we can never get an asymmet-
ric spike around θ = 0 without an asymmetric off-
diagonal Γ term, which represents DM interactions.

have a DM term in addition, the chemical environ-
ment of the Ru–Ru bond must include a polar vec-
tor. In the undistorted honeycomb lattice, a polar
vector is prohibited by the symmetry. It is non-zero
for the next-nearest neighbor exchange links (even
in the undistorted case) [25] or if Cl octahedra are
distorted.

However, the peak shapes in the k versus θ
data (and the behavior in a broader angular range
around it) are not symmetric around the c-axis,
i.e., k(θ) − k(−θ) 6= 0. We have found that this
behavior is only possible if the antisymmetric DM

term is taken into account, which points to distorted
octahedra, leading to a deviation from the assumed
crystal symmetries. This is shown in Fig. 1, where
are the k(θ) results computed from our model, with
the parameter values taken from the best-fit param-
eters of the B = 30 T data (except that we set
D = 0 for the orange curve).

The expressions for F and k depend on the polar
angle θ but not on the azimuthal angle φ. We fit
the data sets for four different values of the applied
magnetic field strength B, using “NonlinearMod-
elFit” of Mathematica. The data sets for B ≤ 15 T
are not considered as they are either close to, or
within the AFM phase. Since the scaling and abso-
lute shift of each data set are uncertain, we include
two more parameters, namely “ζ” and “η”, corre-
sponding to the unknown scale and shift, respec-
tively. The experimental data and the fitted func-
tions are shown in Fig. 2. The confidence intervals
for all the parameters at 67% confidence level are
shown in Table I.

We also fit the k versus B data available for
θ = π/2. It can be checked that the correction
terms from Jγαβ hardly affect the regions around
θ = π/2 (see Fig. 3). The most visible impact of
these correction terms occurs only around θ = 0
and θ = π regions. Hence, the fitting process keep-
ing the first-order correction makes the parameters
indeterminate. However, if we fit only the zeroth-
order expression, we get excellent values for ga
and gc. We also need to include a parameter η to
account for the uncertainty in the absolute shift
of the data set for each temperature value. The
fit results are shown in Fig. 4. The data sets for

Fig. 2. The data sets for k versus θ (in radians) at T = 20 K for various values of the applied magnetic
field strength B [T]: (a) B = 20 T, (b) B = 25 T, (c) B = 30 T, (d) B = 34.5 T. We have represented the
experimental data-points in red, and the best-fit curves in orange.
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TABLE I

The fitting of parameters at 67% confidence level for
the k versus θ data set. Here, B and κ, Γ, D are in
units of [T], ga, gc are in units of [K/T], ζ is dimen-
sionless, and η has the same unit as k.

Estimate Std. error Confidence interval
B = 20 T

κ 54.4 2.37 (52.1, 56.7)
Γ 102 6.09 (96.8, 108)
D −9.60 0.629 (−10.2, −8.98)
ga 4.00 0.137 (3.87, 4.13)
gc 1.79 0.0984 (1.70, 1.89)
ζ 2.00 0.0736 (1.93, 2.07)
η −9.38 0.150 (−9.53, −9.234)

B = 25 T
κ 74.6 1.32 (73.3, 75.9)
Γ 133 8.80 (125,142)
D −13.9 0.866 (−14.7, −13.1)
ga 4.00 0.124 (3.88, 4.12)
gc 1.52 0.0677 (1.46, 1.59)
ζ 2.00 0.071 (1.93, 2.07)
η −24.4 0.281 (−24.7, −24.2)

B = 30 T
κ 95.8 1.46 (94.4, 97.3)
Γ 152 9.46 (143, 161)
D −15.8 0.841 (−16.6, −15.0)
ga 4.00 0.118 (3.88, 4.11)
gc 1.26 0.0486 (1.21, 1.30)
ζ 2.00 0.0687 (1.93, 2.07)
η −50.1 0.507 (−50.6, −49.6)

B = 34.5 T
κ 85.5 2.90 (82.6, 88.3)
Γ 156 28.7 (128, 184)
D −20.3 3.31 (−23.5, −17.1)
ga 4.00 0.276 (3.73, 4.27)
gc 1.20 0.122 (1.08, 1.32)
ζ 2.00 0.145 (1.86, 2.14)
η −88.8 1.42 (−90.2, −87.4)

temperatures T ≤ 20 K are not considered since
each of them has a considerable region within the
AFM phase in the low B ranges, which cannot
be fitted by the functional forms meant for the
paramagnetic phase. The confidence intervals for
ga, gc, and η, at 67% confidence level, are shown
in Table II.

4. Summary and outlook

Let us discuss some other possibilities which
might be responsible for causing the asymmetry
in the spike around θ = 0 in the k versus θ
data. Firstly, in the experimental setups, the path
along which the sample is rotated in the exter-
nal magnetic field to change θ may deviate from
a great circle, leading to an uncertainty of up to 10◦.

TABLE II

The fitting of parameters at 67% confidence level for
the k versus B data set. Here, temperature T is in
units [K], ga, gc are in units of [K/T], and η has the
same unit as k.

Estimate Std. error Confidence interval
T = 30 K

ga 2.43 0.00172 (2.43, 2.44)
gc 1.20 0.00148 (1.2, 1.20)
η 0.000131 0.0158 (−0.0152, 0.0155 )

T = 40 K

ga 2.46 0.000785 (2.46, 2.46)
gc 1.24 0.000738 (1.24, 1.24)
η 0.000267 0.00700 (−0.00655, 0.00709)

T = 50 K

ga 2.42 0.000581 (2.42, 2.42)
gc 1.23 0.000600 (1.23, 1.23)
η 0.00822 0.00473 (0.00362, 0.0128)

T = 60 K

ga 2.34 0.000456 (2.34, 2.34)
gc 1.20 0.000518 (1.20, 1.20)
η 0.00592 0.00310 (0.00290, 0.00894)

T = 70 K

ga 2.28 0.000920 (2.28, 2.28)
gc 1.20 0.00113 (1.20, 1.20)
η 0.00923 0.00490 (0.00446, 0.0140)

T = 80 K

ga 2.20 0.00158 (2.2, 2.2)
gc 1.20 0.00204 (1.20, 1.20)
η 0.0452 0.00637 (0.039, 0.0514)

T = 90 K

ga 2.12 0.00235 (2.12, 2.12)
gc 1.20 0.00316 (1.20, 1.20)
η −0.0124 0.00691 (−0.0191, −0.00565)

T = 100 K

ga 2.03 0.00351 (2.03, 2.03)
gc 1.20 0.00481 (1.20, 1.20)
η 0.043 0.00740 (0.0358, 0.0503)

T = 110 K

ga 1.94 0.00531 (1.94, 1.95)
gc 1.20 0.00732 (1.19, 1.201)
η −0.00637 0.0078 (−0.014, 0.00123)

T = 130 K

ga 1.79 0.0111 (1.78, 1.80)
gc 1.20 0.0151 (1.18,1.21)
η −0.0081 0.00815 (−0.016,−0.000166)

T = 150 K

ga 1.76 0.0953 (1.66, 1.85)
gc 1.287 0.122 (1.17, 1.41)
η −0.00276 0.0385 (−0.0403, 0.0347)
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Fig. 3. Three curves corresponding to leading or-
der expression k(0) (yellow), first order correction
k(1) (blue), and k(0) + k(1) (orange), as functions of
θ. The results have been computed from our theo-
retical model, using the best-fit parameters for the
(T = 20 K, B = 30 T) data set. These three curves
are shown in dashed yellow, dotted red, and orange,
respectively.

Fig. 4. The data sets for k versus B (in units of
[T]) at θ = π/2 for temperatures ranging from
T = 30 K to T = 150 K at intervals of 10 K. The
topmost curve represents the 30 K data, whereas
the lowermost curve represents the 150 K data. We
have represented the experimental data-points in
red, and the best-fit curves in orange.

However, incorporating these deviations, the theo-
retical curves do not show the desired asymmetry.
Secondly, the K-Γ Hamiltonian (even without DM,
distortion, misalignment of rotation, etc.) lacks mir-
ror reflection symmetry. Therefore, magnetotropic
coefficients (or free energy) are different for applied
magnetic fields B and B′ that are related by a mir-
ror reflection in the honeycomb plane. Such asym-
metry is artificially removed in the low-order per-
turbation theory. This is directly analogous to acci-

dental symmetries of the standard model (such as
separate conservation of baryon ad lepton number)
that only exist in the lowest order of expansion in
the inverse GUT scale. It is a general phenomenon
— low orders in perturbation theory tend to ac-
cidentally “restore” some of the symmetries of the
Hamiltonian. In the Kitaev model, the lowest or-
der perturbation expansion in magnetic field [3] is
symmetric (with respect to mirror-ab-plane). To see
the asymmetry of the Hamiltonian, one needs to go
to higher orders in B. The same might be true for
the thermodynamic perturbative expansion. Going
to higher orders (second, or maybe third order), the
asymmetric character of the Hamiltonian may even-
tually show up. However, such higher order compu-
tations are beyond the scope of this paper.

Our best-fit parameters indicate that the Ki-
taev terms are subdominant to the Γ (and D)
terms. In fact, the large Γ value contrasts with
the expectation so far that α-RuCl3 is a “Kitaev
model material” [7, 9, 10, 20]. It has also been pre-
dicted in those models (including a small Heisen-
berg term) [9, 20, 26] that the ratio gc/ga ' 0.4–0.5.
Our results (see Fig. 1) are close to the aforemen-
tioned results, although we should remember that
our model differs from the those mentioned.
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Appendix A: Choice of coordinate system
and crystal symmetries

We choose a coordinate system such that the
plane of the honeycomb lattice is described by three
in-plane vectors r1 = (0, 1,−1), r2 = (−1, 1, 0),
and r3 = (−1, 0, 1). These vectors lie on the plane
formed by cutting the three points (1, 0, 0), (0, 1, 0),
and (0, 0, 1). Then, the perpendicular vector is
r⊥ = 1√

3
(1, 1, 1) and we choose the in-plane direc-

tion as 1√
2
r2, giving B/B = 1√

3
(1, 1, 1) cos(θ) +

1√
2
(−1, 1, 0) sin(θ), with the magnetic field making

an angle θ with the c-axis.
Let us also define the a-axis along the line joining

1
3 (1, 1, 1) and (1, 0, 0), such that the projection of B
on the ab-plane makes an angle φ with the a-axis.

Given a unit vector u, the matrix for a rotation
by an angle of φ about an axis in the direction of u is

R(u, φ) =

 cos(φ) + u2x (1− cos(φ)) uxuy (1− cos(φ))− uz sin(φ) uxuz (1− cos(φ)) + uy sin(φ)

uyux (1− cos(φ)) + uz sin(φ) cos(φ) + u2y (1− cos(φ)) uyuz (1− cos(φ))− ux sin(φ)
uzux (1− cos(φ))− uy sin(φ) uzuy (1− cos(φ)) + ux sin(φ) cos(φ) + u2x (1− cos(φ))

 .

(11)
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Now the crystal symmetry allows invariance under
a C3 rotation about r⊥, which corresponds to in-
variance under the rotation matrix

R

(
r⊥,

2π

3

)
=

 0 0 1

1 0 0

0 1 0

 . (12)

For C2 rotation about r1, we have

R

(
r1√
2
, π

)
=

 −1 0 0

0 0 −1
0 −1 0

 . (13)

Due to on-site spin–orbit coupling, the leading
order paramagnetic term in our model is given by

H0 = −
∑

α={x,y,z}

B̃ασ
α
j , (14)

rather than− ∑
α={x,y,z}

Bασ
α
j

 , where B̃α ≡ BγDγα.

(15)
We still have the C3 and C2 rotation symmetries of
P3112 [22] to be satisfied, which implies that

[B]T[D][σ] = (R[B])
T
[D]R[σ]⇒ D = RT[D]R,

(16)
where R has been defined in (12). Then,
R(r⊥, 2π/3) and R(r1/

√
2, π) restrict [D] to have

only two independent components, namely A and
B. Therefore,

[D] = A113×3 +

 0 B B
B 0 B
B B 0

 . (17)

Appendix B: Thermodynamic
expansion of the K-Γ model

in the large magnetic field limit

We perform a thermodynamic expansion of the
K-Γ model in the large magnetic field limit, follow-
ing the methods describe in [23], which are appli-
cable when we are interested in the thermodynamic
properties at finite temperature. We review this per-
turbation expansion when the Hamiltonian can be
written as H = H0 + λV , where H0 is the leading
order part for large B, and λ is the perturbative
expansion parameter, with V being the subleading
part.

We are interested in the thermodynamic proper-
ties at finite temperature. Thus we start with the
canonical partition function

Z(T ) = Tr
(
e−βH

)
= Tr

[
e−β(H0+λV )

)
(18)

and seek to expand its logarithm in powers of λ.
SinceH0 and V do not commute for the K-Γ model,
we use the approach employed for interaction pic-
ture time evolution. We define the function f(β) in
the following way

e−β(H0+λV ) = e−βH0f(β)⇒

df(β)

dβ
= −λeβH0V e−βH0f(β). (19)

Casting this in the form of the integral equation, we
get

f(β) = 1− λ
β∫

0

dτ Ṽ (τ)f(τ), (19)

where
Ṽ (τ) = eτH0V e−τH0 . (20)

We solve the above by iteration

f(β) = 1 +

∞∑
n=1

(−λ)n
β∫

0

dτ1

τ1∫
0

dτ2 · · ·

τn−1∫
0

dτnṼ (τ1)Ṽ (τ2) . . . Ṽ (τn). (21)

This gives us the partition function as

Z(T ) = Z0

[
1 +

∞∑
n=1

(−λ)n
∫ β

0

dτ1

τ1∫
0

dτ2 · · ·∫ τn−1

0

dτn〈Ṽ (τ1)Ṽ (τ2) . . . Ṽ (τn)〉0

]
, (22)

where 〈. . . 〉0 denotes the unperturbed expectation
value

〈A〉0 ≡
Tr
(
e−βH0A

)
Tr (e−β H0)

(23)

for any operator A. The leading order term is given
by

〈Ṽ (τ)〉0 =
Tr
(
e−βH0 eτH0V e−τH0

)
Tr (e−βH0)

=

Tr
(
e−βH0V

)
Tr (e−βH0)

, (24)

which is in fact independent of τ .
Let us compute the leading term in the partition

function for the Hamiltonian of the main text, such
that

H0 = −
∑

α={x,y,z}

B̃ασ
α
j , (25)

V =
∑
γ

∑
〈jk〉γ−links

Jγαβσ
α
j σ

β
k . (26)

Hence, we obtain

〈Ṽ (τ)〉0 =

∑
γ,α′,λ′

∑
〈jl〉γ−links

Jγα′λ′ sinh(βB̃α′) sinh(β B̃λ′)

cosh2(βB̃)
=

Nc
∑

γ,α′,λ′
Jγα′λ′ sinh(βB̃α′) sinh(βB̃λ′)

cosh2(βB̃)
, (27)
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where B̃ =
√∑

α B̃αB̃α, and Nc is the number of
unit cells in the system. Finally, this gives us the
partition function, corrected to leading order, as

Z(T ) =
[
2 cosh(βB̃)

]2Nc
×

1 + βNc
∑
γ,α′,λ′

Jγα′λ′
sinh(βB̃α′) sinh(βB̃λ′)

cosh2(βB̃)

 .
(28)
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