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A quantum simulation approach facilitated by the self-consistent algorithm was applied in the present work to

ferromagnetic and antiferromagnetic three-dimensional Heisenberg lattices consisting of S = 1 spins. Consequently,
the calculated spontaneous magnetizations for the two sorts of lattices are precisely consistent with mean-field
theory in the whole temperature range. Especially, the numerical results, such as magnetizations, total energies
and total free energies per mole of spins, show no size effects. Thus, the physical properties of a huge bulk magnet
can be estimated by performing simulation for a very tiny sample, so that the computational time can be greatly
saved.
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1. Introduction

Even nowadays, the Heisenberg model is still a very
hot research topic which are currently intensively stud-
ied both theoretically with quantum physics [1–5] and nu-
merically mainly with Monte Carlo (MC) method [6–10].
However, the MC method is based on classical physics,
since all spins in the studied systems are treated by the
method as classical vectors with fixed lengths, though
they are allowed to rotate spatially in the computing pro-
cess. On the other hand, the mean-field theory is now still
very popular both in classical and quantum statistical
model description, and various new methods have been
proposed to develop the theory and improve the approx-
imation [11–13]. Recently, Dudek et al. combined the
mean-field approximation with the Monte Carlo scheme
to propose a new simulation method, as a result, their
calculated magnetization with this model for the two-
dimensional Ising model is well consistent with mean-field
theory [14].

To cope with the problem met by the classical methods,
we have developed a new quantum simulation method
based on mean-field theory by using a self-consistent al-
gorithm, so it is referred to as the SCA approach, and
have successfully applied it to nanosystems consisting
of rare-earth elements [15, 16] and 3d transition met-
als [17–19]. The SCA approach was assumed to be
based on the principle of the lowest free energy [15].
That is, in a computing process, the orientations and
magnitudes of all magnetic moments in the considered
system are adjusted simultaneously by the local effec-
tive magnetic fields to minimize the total free energy
of the whole system, so that the code can quickly con-
verge to correct equilibrium states at all temperatures
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spontaneously. The above hypothesis has been proved
by our recent simulations performed for a ferromag-
netic (FM) nanowire [18].

So far, our calculated results are all reasonable, espe-
cially, our simulated magnetic structure using the SCA
approach for a DyNi2B2C nanoball, assumed to be cut
out of a body-centered tetragonal crystallite, were in
good agreement with that observed in the bulk sample:
below the transition temperature, the magnetic moments
on an ab-plane inside the core aligned ferromagnetically
in the [110] direction, two adjacent ab layers ordered an-
tiferromagnetically, and the calculated transition tem-
perature was very close to that of the bulk sample [16].
In addition, our recent simulations performed for an anti-
ferromagnetic nanoparticle using the SCA approach has
generated the same results as those calculated with a new
quantum Monte Carlo method we proposed, so that the
two quantum simulation approaches were verified by each
other [19].

However, to prove the correctness of this new simu-
lation method, it is still necessary to make comparison
directly with quantum theory. For the purpose, this work
has been done. Here, the SCA approach was applied to
three-dimensional (3D) Heisenberg-like models, and the
simulated results were compared with those obtained by
directly solving the system Hamiltonians. Consequently,
the calculated magnetizations in the two ways are exactly
identical, verifying the correctness of the new simulation
approach theoretically. Moreover, the simulated results
show no size effects. Thus, the physical properties of a
huge bulk magnet can be obtained by performing simu-
lations for a very tiny sample, so that the computational
speed can be greatly accelerated.

2. Quantum simulation model

In the present work, the magnetic systems are assumed
to be composed of S = 1 spins. When no external
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magnetic field is exerted but uniaxial anisotropy interac-
tion is present, the Heisenberg model can be described by

H = −1

2

∑
i,j 6=i

JijSi·Sj −KV

∑
i

S2
z , (1)

where Jij and KV denotes the strengths of the Heisen-
berg exchange interaction among the neighboring spins,
and the magnetic uniaxial anisotropy assumed to be in
the z-direction.

For simplicity, we only consider the exchange inter-
action between the nearest spins, and further assume
that this interaction is uniform in the whole magnet,
i.e., Jij = J . In our model, the spins appearing in Eq. (1)
are quantum operators instead of the classical vectors.
Since S = 1, the matrices of the three spin components
are given by
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respectively, and the thermal average of any physical
quantity A at temperature T are evaluated with

〈A〉 =

∑
n〈ϕn|Â exp(−εn/kBT )|ϕn〉∑

n exp(−εn/kBT )
, (3)

where εn and ϕn are the eigenenergy and eigenfunction
of the considered spin Hamiltonian.

A simple antiferromagnetic system can be decomposed
into two sublattices which order in the opposite direc-
tions in the magnetic phase. Thus, the spins in the same
sublattice are coupled ferromagnetically, but those be-
longing to different sublattices are coupled antiferromag-
netically. Once again, if we only consider the uniform
nearest neighboring exchange interaction, the Hamilto-
nian for each kind of the system has the similar form,
but now J <0, and in the computing process we must
know clearly what a spin is considered and what are the
neighboring spins.

In our theoretical computations, the above Hamilto-
nian was firstly diagonalized to obtain the eigenvalues
and eigenfunctions of the considered spin, then they were
inserted into quantum formulae to calculate the 〈Sx〉,
〈Sy〉 and 〈Sz〉 of the spins in a self-consistent manner.

To make use of the SCA approach for spin lattices,
mean-field theory must be employed. Thus, the Hamil-
tonian is decomposed into N non-linear equations which
are still coupled together, provided that the lattice con-
tains N spins. Then in the simulation, these non-linear
equations are solved numerically and theN magnetic mo-
ments are evaluated self-consistently. The SCA simula-
tions are usually started far above the transition temper-
atures from a spin configuration with all spins randomly
orientated, then carried out down to very low temper-
atures with a reducing step ∆T (< 0), and periodical

boundary conditions are applied. During simulations,
once the difference |〈S′i〉 − 〈Si〉| between the two suc-
cessive iterations for every spin is less than a very small
given value τ0, convergency is considered to be reached.

3. Numerical results in comparison
with mean-field theory

To compare with the theory, we performed simula-
tions for both ferromagnetic (FM) and antiferromag-
netic (AFM) 3D magnetic lattices consisting of S = 1
spins by means of the SCA approaches using J = ±1 K
and KV = 1 K, respectively. Here, the two parameters
are scaled with the Boltzmann constant. Moreover, since
J is assigned to the unit, all other parameters and quan-
tities, including temperature, energy and free energy are
scaled with J as well, so that our calculated results have
more general meaning.

Fig. 1. Spontaneous magnetizations calculated with
the SCA approach for the (a) FM, and (b) AFM,
3D Heisenberg models on cubic lattice in comparison
with mean-field theory.

The spontaneous 〈Sz〉 curves calculated with the set
of parameters for the two sorts of lattices are depicted
in Fig. 1, other two components, 〈Sx〉 and 〈Sy〉, vanish
due to the strong uniaxial anisotropy along the z-axis.
In the both cases, our numerical results are precisely
identical with those obtained by directly diagonalizing
the Hamiltonian matrices, so the transition temperatures
detected from the curves, being about 4.32 K, are exactly
equal to the theoretical value.
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Fig. 2. (a) Magnetic configuration on the center (001)
cross-section obtained at T = 4.29 K for the AFM 3D
Heisenberg model on cubic lattice, (b) free energy and
energy per mole of spins calculated for both FM and
AFM 3D Heisenberg models on cubic lattice, in the ab-
sence of external magnetic field by means of the SCA
method. The solid and hollow triangles denote the pos-
itive and negative spins in the z-direction, respectively.

Our simulations with the SCA approach have gener-
ated almost perfect ferromagnetic and antiferromagnetic
magnetic configurations in the magnetic phases even im-
mediately below the transition temperatures as shown
in Fig. 2a, for instance, where the spins on the z = 10a
cross-section obtained at T = 4.29 K for 20×20×20 AFM
lattice are projected onto the (001) plane. In the case of
ferromagnet, all spins order ferromagnetically below TC,
so there is no need to plot such simple spin structure
here.

For these canonical systems, the total free energy
F and total energy E can be calculated with F =
−kBT logZN and E = − ∂

∂β logZN respectively, where
β = 1/(kBT ) and ZN is the partition function of the
whole system. Figure 2b displays the F and E curves
obtained with the SCA method. Astonishingly, both the
total free energies and total energies calculated by means
of the SCA approach for the FM and AFM lattices are
precisely identical with each other. The sudden change
in the E curve exactly at TN is a sign of phase transition.

We have repeated simulations for FM and AFM
Heisenberg lattices with different sizes, of course using
the periodic conditions and the same set of parameters,

and always obtained the same magnetizations, total ener-
gies and total free energies per mole of spins as displayed
in the above two figures.

4. Computational efficiency and accuracy
To study the computational efficiency, we carried out

simulations for a 3D AFM Heisenberg-like lattice con-
sisting of 10× 10× 10 spins by assigning ∆T = −0.05 K
and τ0 = 10−7, the iterations required to reach conver-
gency at different temperatures are displayed in Fig. 3a.
The loop number varies with decreasing temperature, a
sharp peak appears around TN ≈ 4.32 K, meaning much
more iterations are needed to reach equilibrium state near
phase transition, then attenuates rapidly as temperature
drops. Very strikingly, it only took less than 10 loops to
converge below 2.65 K, and about 35.1 s to complete the
whole simulation.

Fig. 3. (a) Iterations required to reach equilibrium at
different temperatures, and (b) variances estimated af-
ter convergency, as the SCA approaches was applied to
the 10× 10× 10 FM Heisenberg lattice.

On the other hand, to estimate the computational ac-
curacy, we define the variance as:

δ =
1

N〈Sz〉

√∑
i

(〈Siz〉 − 〈Sz〉)2, (4)

where N is the total number of the spins in the lattice.
Figure 3b displays δ curve obtained in the SCA simula-
tion for the 10× 10× 10 FM lattice. The relative larger
δ values above TC(≈ 4.32 K) reflect violent spin fluc-
tuations. The δ value drops sharply as T < TC. For
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instance, δ ∼ 3×10−3 below T = 4.2 K. This small value
reflects very good computational accuracy achieved by
the simulation approach.

5. Conclusions and discussion

To check our results presented here, we repeated simu-
lations later for the 20 × 20 × 20 lattices by increasing
iteration number up to 5000, however found no obvi-
ous differences. We also performed simulations for the
FM and AFM Heisenberg lattices of size 4 × 4 × 4 us-
ing the same set of parameters and periodical boundary
conditions, consequently obtained exactly same results as
those shown in Figs. 1 and Fig. 2b. Of course, the calcu-
lated magnetic structures for the two small lattices are
perfectly ferromagnetic or antiferromagnetic. Especially,
as τ0 = 10−7 and ∆T = −0.02 K, the simulation for
the tiny AFM lattice only took about 8.94 s to complete.
Therefore, the properties of a huge magnet can be deter-
mined directly by doing simulation for a very tiny sample
with the SCA approach, so that the computational speed
can be greatly accelerated, at least in the present cases.

By reducing KV from 1 K to very small values for the
FM and AFM Heisenberg lattices, we found in simula-
tions that the 〈Sz〉 curves obtained with the numerical
and theoretical methods were always identical, no non-
zero 〈Sx〉 and 〈Sy〉 were visible, except for the case when
KV is extremely weak, for example as KV = 0.01 K,
where both 〈Sx〉 and 〈Sy〉 were detectable in an order of
2× 10−5 around TM , thus negligible.

In conclusion, we have applied the SCA approach to
the FM and AFM Heisenberg-like models, and the cal-
culated magnetizations are identical with those obtained
by directly diagonalizing the Hamiltonians. Since the
periodical boundary condition was used in the frame of
quantum physics, in the FM case, all spins in the lattice
are same; whereas in the AFM case, all spins belonging
to the same sublattice are identical. Therefore, the whole
FM lattice can be represented by just one spin, and the
two oppositely oriented sublattices of the AFM lattice
may be described by just two antiferromagnetically cou-
pled spins. The agreements between our numerical and
theoretical results verify the correctness and applicability
of the new simulation approach once again.
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