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In this work we measure the nucleation and annihilation of magnetic vortices in Pacman-like (PL) micromag-
nets prepared from Permalloy (Ni81Fe19, Py) at 77 K. Lateral dimensions of explored objects are ≤ 1 µm with
thickness of about 40 nm. The micromagnets are located directly on the high-sensitive micro-Hall probe based on
GaAs/AlGaAs heterostructure by lift-o� process. Experiments show good agreement of the magnetization reversal
with the micromagnetic simulation. Other shapes of micromagnets are also considered to obtain more precise
picture of the vortex dynamics.
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1. Introduction

Current developments in controlled manipulation of
magnetic domains in ferromagnetic structures open op-
portunities for unique memory architectures with higher
storage density, faster performance, and lower power con-
sumption to write and read the information [1, 2]. The
bene�t of the magnetic structures with speci�c ordering
is their ability to store two bits of information simultane-
ously (in terms of chirality and polarity of the magnetic
vortex).
Hall magnetometry based on micro-Hall probes is a

powerful technique used for acquiring quantitative infor-
mation on local stray �eld of individual ferromagnetic
objects, which includes observations of vortex dynamics.
From the experiments, it was clear that the magnetiza-
tion reversal of disks includes vortex nucleation, propaga-
tion, and annihilation [3�5]. However, the detailed mech-
anism of vortex formation remains still an open problem.
In our previous work based on micromagnetic calcula-

tions, Pacman-like (PL) nanomagnet has been designed
and its magnetic properties have been calculated [6, 7].
It is shown that ground states can be controlled only by
applying in-plane �elds and the relation between the ele-
ment with broken rotational symmetry and the direction
of applied �eld has to be considered.

2. Experiment

Hall crosses that serve as high-sensitive probes were
fabricated from a GaAs/AlGaAs heterostructure. At
�rst Hall crosses and contact leads were de�ned by
optical lithography followed by wet chemical etching
(1H3PO4:2H2O2:8H2O system). In the second step a
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miniaturization of the fabricated crosses was performed
by EBL lithography using a PMMA resist that was ex-
posed by the dose of 250 µC/cm2 at 20 kV and wet
chemical etching by the same system. In the subsequent
steps, PL micromagnet was patterned by EBL lithogra-
phy (dose of 110 µC/cm2 at 20 kV), e-beam evaporation
of 40 nm Py, and freed by standard lift-o� process.

Only one PL was patterned per cross to enable single-
element observation. The hysteresis loops were measured
by applying an in-plane magnetic �eld and recording the
resulting Hall voltage while biasing the device with a dc
current of 10 µA. Measurements were carried out at room
and 77 K temperatures, however due to noise only lower-
temperature characteristics are presented.

Fig. 1. Scanning electron microscope micrograph of
miniaturized Hall probe with Pacman-like micromag-
net.

Figure 1 shows fabricated micro-Hall probe with the
PL micromagnet located on the probe. Diameter of the
PL element is 1 µm and an active region of the probe
is approximately 1× 1 µm2. The micromagnet is shifted
from the central position to improve the measured signal.
Best resolution is achieved for Hall con�guration when
current �ows between leads I+ and I−, and voltage drop
is measured between leads V+ and V−.

(390)

http://dx.doi.org/10.12693/APhysPolA.126.390
mailto:tomas.scepka@savba.sk


Vortex Dynamics in Ferromagnetic Nanoelements. . . 391

3. Results and discussion

Experimental magnetization reversal trace for the PL
micromagnet (Fig. 1) is shown in Fig. 2a. Jumps in
the stray �eld correspond to signi�cant changes of the
magnetic state (vortex nucleation and annihilation, etc.).
Such changes are directly connected with the abrupt re-
distribution and/or change in the exchange and dipole
energies of the system. Smooth change of the signal can
be attributed to the smooth shift of the magnetization
con�guration (shift of the vortex, c-state, s-state, etc.)
within the ferromagnet.

Fig. 2. a) Magnetization reversal of PL micromagnet
measured in the Hall con�guration at 77 K. The in-plane
magnetic �eld applied at the angle of 15◦ with respect to
PL symmetry axis, b) simulated magnetization reversal
of the PL element.

Fig. 3. Images of local magnetization obtained by mi-
cromagnetic simulation.

Hysteresis loop in Fig. 2a contains two signi�cant
jumps for both external �eld directions. To evaluate the
voltage drop of the jumps, the measurement for a particu-
lar angle was repeated many times. Two dominant values
of the voltage drop were observed and we suppose that
they correspond to two values of the PL-micromagnet
chirality.
Figure 2b shows simulated magnetization reversal us-

ing OOMMF software package [8] (zero-temperature sim-
ulation). The simulation was performed on 1-µm element
that contains similar boundary defects as the fabricated
PL micromagnet. Magnetic �eld in the simulation was
applied at the angle of 7.5◦ with respect to x-axis, which
is close to the angle 15◦ selected in the experiment. Im-
portant points in the simulated loop are labelled by let-

ters (a�f), for which corresponding magnetization images
are shown in Fig. 3. The sequence illustrates reordering
of the magnetic pattern. At 21 mT vortex nucleates, the
biggest jump at 6 mT corresponds to the jump of the vor-
tex to the central position. For the �elds between 6 mT
and -67 mT the vortex propagates perpendicular to the
applied magnetic �eld. The annihilation of the vortex
appears at -67 mT.

4. Conclusions

In this work, we have explored magnetic properties of
1-µm Pacman-like ferromagnet in external magnetic �eld
using micro-Hall probe. In the experiment we have fo-
cused on the nucleation �eld of the vortex and we have
found that there are two levels of the Hall-voltage drop
that depend on vortex chirality. The shape of the fer-
romagnet in the micromagnetic simulation was identical
to the shape of the fabricated one. Therefore, the sim-
ulation can explain qualitatively the experimental mag-
netization loop. However, due to the temperature di�er-
ences between the experiment and the simulation there is
a slight discrepancy in the hysteresis loops. We suppose
that for lower PL dimensions even more precise picture
of the vortex dynamics should be seen within experiment
presented.
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