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1. Introduction

1.1. General comments

A useful approximation method (the best multicon�g-
urational approximations) for solving the eigenproblem
in the lower part of the spectrum of the Hamiltonian
of N identical fermions was proposed by Pruski [1]. This
method relies on (i) �nding the so-called minimizing ba-
sic manifold M, which is a �nite-dimensional space of
1-fermion functions and minimizes the average energy
of the N -fermion system in the N -fold Grassman prod-
uct M∧N of M (M∧N is a linear hull of all Slater de-
terminants of N 1-fermion functions from M) and (ii)
constructing in M∧N a set of three successive approx-
imation Hamiltonians of the real system. These three
successive Hamiltonians are: the best 1-particle approx-
imation, the best coarse-grained con�gurational approx-
imation and the full multicon�gurational picture of the
system. Each of them greatly facilitates the construc-
tion of the next one. Moreover, each successive model is
better than the previous one.
The purpose of the present paper is to use the best ap-

proximations for the atomic ions system. The character-
istic feature of the atomic ions is that atomic ions (N,Z)
having the same reduced nuclear charge ξ = λ−1 = Z

N−1
have the same minimizing basic manifolds [2]. The mini-
mizing basic manifold and eigenvalues of the best approx-
imations are calculated by means of a method similar to
the perturbation theory. Here we use as a perturbation
parameter λ = N−1

Z which is contained in the interval
〈0, 1), for each atomic ion. The case λ = 0 is ful�lled for
one-electron ions in which eigenproblem is solved exactly.
In this way, through the expansion of eigenfunctions and
eigenvalues in powers of λ, we obtain perturbation ex-
pansions which are valid for each λ ∈ 〈0, 1), i.e. for all
atomic ions. The coe�cients of these expansions are uni-
versal, independent of N and Z quantities, and depend
on the dimension of the minimizing basic manifold only.
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The calculations are carried out by means of the canon-
ical transformations method, which enables us to present
eigenspaces by their projectors [3]. These calculations
are invariant under the three-dimensional rotation group
(symmetry group of atomic ion Hamiltonians). As a con-
sequence the spherical harmonics of wave functions are
not used in calculations. Concerning the canonical trans-
formation U we postulate that U = exp(iD) where D is
a self-adjoint operator which is expanded in a power se-
ries in λ, i.e. D = Dλ = λD1 + λ2D2 + . . . The operator
Dλ is uniquely determined if we additionally require that
operators D1, D2, . . . have the Hilbert�Schmidt norm
minimal. This condition is equivalent to a minimum
distance between perturbed and unperturbed eigenfunc-
tions. Moreover, operators D1, D2, . . . are invariant un-
der the three-dimensional rotation group.
At the very end of this paper the �nal formulae for

the approximation energies of atomic ions in the case of
the best 1-particle approximation and the best coarse-
-grained con�gurational approximation are presented.

1.2. Some de�nitions

Let H be the Hilbert space of square-integrable
1-particle functions, H∧N that of square-integrable
N -particle functions associated with a system of N
fermions. For N ≥ 2, H∧N = H ∧ . . . ∧ H (N times)
is conceived as the N -fold Grassman product of H by it-
self, i.e. the subspace A(N) HN consisting of completely
antisymmetric elements of the N.-fold tensor product
HN = H⊗ . . .⊗H (N times) of H by itself, where A(N)
is the antisymmetric projector. The Hilbert spaces HN
and H∧N are spanned, respectively, by their simple ele-
ments f1 ⊗ f2 ⊗ . . .⊗ fN and f1 ∧ f2 ∧ . . . ∧ fN = A(N)
(f1 ⊗ f2 ⊗ . . .⊗ fN ).
If K(p) and L(q) are two operators in Hp and Hq,

K(p) ⊗ L(q) is an operator in Hp+q, and the projection
of the latter onto H∧(p+q) is denoted by K(p) ∧ L(q),
i.e. K(p) ∧ L(q) = A(p + q)(K(p) ⊗ L(q))A(p + q). It is

easily found that K(p) ∧ L(q) = K̂(p) ∧ L̂(q) = L(q) ∧
K(p), where K̂(p) = A(p)K(p)A(p) is an antisymmetric
projection of the operator K(p) onto H∧p. The symbol
K∧m is de�ned as K∧m = K ∧K ∧ . . . ∧K (m times),
where K(l) is an operator in H∧l and K∧m is an operator
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in H∧lm. In particular, if I = I(1) is the identity in H,
the operator I(N) = I⊗I⊗. . .⊗I (N times) is an identity

in HN and Î(N) = A(N)I(N)A(N) = I∧N = A(N) is
an identity in H∧N .

It is often convenient to use the following indicial (or
tensorial) notation [2]. This notation is connected with
many-particle calculations. We denote f1, f2, f3, . . . for
the elements of H, and f12...N , f1

′2′...N ′
, . . . for those

of HN . The complex conjugates to f1 and f12...N are

denoted by f1 = f1 and f12...N = f12...N . The indices
in f12...N correspond to the particles 1, 2, . . . , N . The
Einsteinian convention of summation is adopted. In par-
ticular, the expression

f12...Ng12...N = 〈f |g〉 (1.2.1)

is the scalar product of f and g. If 〈f |f〉 = 1, the symbol

P 12...N
1′2′...N ′ = f12...Nf1′2′...N ′ (1.2.2)

represents the projector onto f ∈ HN . In fact, for any
g12...N :

P 12...N
1′2′,...N ′g1

′2′...N ′
= f12...Nf1′2′...N ′g1

′2′...N ′

= 〈g|f〉 f12...N , (1.2.3)

which is characteristic for the projector onto f . If { f
(i)

}i∈I

is an orthonormal set in H∧N (i.e. f12...N
(i)

f12...N
(k)

= δi,k),

then

P 12...N
1′2′...N ′ =

∑
i∈I

f12...N

(i)

f1′2′...N ′

(i)

(1.2.4)

de�nes the projector onto the subspace lin{ f
(i)

}i∈I ⊂

H∧N . In particular if { f
(i)

}i∈I is complete in H∧N , then

P (N) = Î(N). If { f
(i)

}i∈I is the orthonormal base in the

subspaceM⊂ H, then
P 1
1′ =

∑
i∈I

f1

(i)

f1′
(i)

(1.2.5)

is the projector ontoM and

(P ∧ P )121′2′ =
1

2
(P 1

1′P
2
2′ − P 1

2′P
2
1′) (1.2.6)

represents the projector ontoM∧2 =M∧M⊂ H∧2 and
in general

(P∧N )12...N1′2′...N ′ =
1

N !

∣∣∣∣∣∣∣∣∣
P 1
1′P

1
2′ . . . P

1
N ′

P 2
1′P

2
2′ . . . P

2
N ′

. . .

PN1′ P
N
2′ . . . P

N
N ′

∣∣∣∣∣∣∣∣∣ (1.2.7)

is the projector onto M∧N ⊂ H∧N . We assume that
the linear operators to be dealt with are representable as
integral operators. The kernels of the latter are general-
ized functions of particle coordinates and will be written
in the form K12...N

1′2′...N ′ . K is linear operator in the Hilbert
space H∧N of N -fermions and takes the form

g12...N = K12...N
1′2′...N ′f1

′2′...N ′
. (1.2.8)

If the kernel K12...N
1′2′...N ′ is self-adjoint, then, obviously

K12...N
1′2′...N ′ = K1′2′...N ′

12...N and Eq. (1.2.8) may be written

equivalently in the form

g12...N = K1′2′...N ′

12...N f1′2′...N ′ . (1.2.9)

We will use the 1-particle operator (A(2)|B(1)) de�ned
as follows:

(A(2)|B(1))11′ = A12
1′2′B

2′

2 . (1.2.10)

The operator (A(2)|B(1)) is linear in both components
A(2) and B(1).

2. The theory of the best multicon�gurational

approximations

2.1. Hamiltonian of N-fermion system

Let us consider a quantum-mechanical system of N
identical fermions interacting via 2-body forces in the
presence of an external �eld. The Hamiltonian of such a
system has the following form:

H(N) = H[1, . . . , N ]

=

N∑
i=1

H[i]⊗ I[1, . . . , i− 1, i+ 1, . . . , N ]

+
∑

1≤i<j≤N

V [i, j]⊗ I[1, . . . , i− 1, i+ 1,

. . . , j − 1, j + 1, . . . , N ]

=
∑

1≤i<j≤N

H[i, j]⊗ I[1, . . . , i− 1, i+ 1,

. . . , j − 1, j + 1, . . . , N ], (2.1.1)

where

H[i, j] =
H[i]⊗ I[j] +H[j]⊗ I[i]

N − 1
+ V [i, j]. (2.1.2)

Because the Hamiltonian H(N) describes a system of N
identical fermions we will consider its antisymmetrical
projection onto H∧N , i.e.

Ĥ(N) = A(N)H(N)A(N) = A(N)H(N)

= H(N)A(N) =

(
N

2

)
Ĥ(2) ∧ Î(N − 2), (2.1.3)

where

Ĥ(2) =
2

N − 1
F (1) ∧ I(1) + V̂ (2) (2.1.4)

and V̂ (2) are antisymmetrical projections of H(2) and
V (2) onto H∧2.
Further, the Hamiltonian of a system of N fermions

Ĥ(N) bounded from below and possessing discrete eigen-
values, at least in the lower part of the spectrum, is con-
sidered.

2.2. The multicon�gurational analysis

Let us consider a �nite-dimensional subspace M in
the Hilbert space H. M∧N = M ∧ . . . ∧ M ⊂ H∧N
is the linear hull of all antisymmetrized tensor products
of N 1-fermion functions fromM. We callM the basic
manifold,M∧N the multicon�gurational manifold gener-
ated by M, and observe that from dimM = m follows
dimM∧N =

(
m
N

)
.

Throughout the paper it is assumed that M∧N lies
in the domain D(Ĥ(N)) of Ĥ(N). Suppose E1 =
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inf{E(f) : f ∈ M∧N} is the minimal value of the en-

ergy functional E(f) = 〈f |Ĥ(N)f〉/〈f |f〉 in M∧N and
denote by K1 the linear subspace ofM∧N on which E(f)
has the value E1, so K1 = {f ∈M∧N : E(f) = E1}. The
pair (E1, K1) will be called the �rst (or ground-) level

of Ĥ(N) in M∧N , E1 is the energy and K1 the sub-
space of this level. Similary we call the pair (E2, K2),
with E2 = inf{E(f) : f ∈ M∧N � K1} and K2 = {f ∈
M∧N � K1 : E(f) = E2}, the second level of Ĥ(N)
inM∧N . This process may be continued until

M∧N = ⊕aα=1Kα. (2.2.1)

The set {(Eα,Kα)}aα=1 represents the complete set of lev-

els of Ĥ(N) inM∧N . Introduce the projectors P
M

: H →

M, P∧N
M

: H∧N → M∧N , Pα : M∧N → Kα. Then

Eq. (2.2.1) is equivalent to

P∧N
M

=

a∑
α=1

Pα (2.2.2)

and the operator
∑a
α=1EαPα is identical to the operator

Ĥ
M
(N) = P∧N

M
Ĥ(N)P∧N

M
i.e.

Ĥ
M
(N) =

a∑
α=1

EαPα. (2.2.3)

Following Kato [3], we will call the operator Ĥ
M
(N) the

orthogonal projection of the Hamiltonian Ĥ(N) onto the
state spaceM∧N .
Physically, the self-adjoint operator Ĥ

M
(N) represents

the Hamiltonian Ĥ(N) with the states reduced to those
in the manifold M∧N . In other words, the �rst level
(E1,K1) of Ĥ

M
(N) may represent a useful approximation

to the ground-level of Ĥ(N), and likely a number of low-

est levels of Ĥ(N) may be approximated by a subset of

levels of Ĥ
M
(N).

The above approximations are known as multicon�g-
urational approximations (or CI � con�guration inter-
action approximations). We will also use the term M-
-approximations, both for brevity and for displaying their
dependence on the basic manifold.
Two principal problems involved in the theory of mul-

ticon�gurational approximations are: (i) the problem
of determining optimal basic manifolds M (so called
minimizing basic manifolds), and (ii) the most e�ective

method of determining the eigenvalues of Ĥ
M
(N).

2.3. The minimizing basic manifold

The minimizing basic manifold M is that which for
�xed m = dimM uniquely satis�es the condition

E
M

[
Ĥ(N)

]
=

Tr
(
Ĥ(N)P∧N

M

)
Tr P∧N

M

=
Tr Ĥ
M
(N)(

m
N

) = min .

(2.3.1)

From Eqs. (2.3.1) and (2.2.3) we see that

E
M

[
Ĥ(N)

]
=

∑a
α=1Eα(
m
N

) . (2.3.2)

It means that E
M
[Ĥ(N)] is the average energy of Ĥ(N)

on M∧N . Therefore the minimizing basic manifold M
minimizes the average energy of Ĥ(N) onM∧N .
The requirement that M be unique means that the

admissible values of m = dimM are not arbitrary in
general, but run over some sequence of magic numbers
characteristic of the interactions in the system (2.1.1).
If m = dimM is a magic number, it implies the invari-
ance of the multicon�gurational manifold M∧N under
the symmetry group of Ĥ(N), hence Ĥ

M
(N) is also in-

variant under the symmetry group of Ĥ(N).

2.4. Generalized self-consistent �eld equations

From Eqs. (2.3.1) and (2.1.3) it follows that:

E
M

[
Ĥ(N)

]
=

(
m
N

)(
m
2

) Tr (Ĥ(2)P∧2
M

)
=

(
m
N

)(
m
2

)Ĥ12
1′2′ P

1′

1
M

P 2′

2
M
, (2.4.1)

where P 1′

1
M

is the kernel of P
M
. Hence, the variation of the

E[Ĥ(N)]
M

is in the following form:

δ E
M

[
Ĥ(N)

]
=

(
m
N

)(
m
2

)Ĥ12
1′2′

(
P 1′

1
M

δ P 2′

2
M

+P 2′

2
M

δ P 1′

1
M

)
= 2

(
m
N

)(
m
2

)Ĥ12
1′2′ P

2′

2
M

δ P 1′

1
M

. (2.4.2)

If { f
(i)

}mi=1 is the orthonormal base in M, then

P 1′

1
M

=
∑m
i=1 f

1′

(i)

f1
(i)

and

δ P 1′

1
M

=

m∑
i=1

(f1
′

(i)

δ f1
(i)

+ f1
(i)

δ f1
′

(i)

). (2.4.3)

Substituting this in Eq. (2.4.2) we �nd

1

2
δ E
M

[
Ĥ(N)

]
=

m∑
i=1

K1
1′ f

1′

(i)

δ f1
(i)

+

m∑
i=1

K1
1′ f1

(i)

δ f1
′

(i)

,

(2.4.4)

where the 1-particle operator K(1) has the form

K(1) =

(
m
N

)(
m
2

) (Ĥ(2)| P
M

). (2.4.5)

In turn, the 1-particle operator (Ĥ(2)| P
M

) (cf.

Eq. (1.2.10)) is that whose kernel is de�ned as fol-
lows:

(Ĥ(2)| P
M

)11′ = Ĥ12
1′2′ P

2′

2
M

. (2.4.6)

The minimum of E
M
[Ĥ(N)] under the conditions

f1
(i)

f1
(j)

= δi,j is equivalent to
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δ

(
1

2
E
M

[
Ĥ(N)

]
−

m∑
i,j=1

λj,i f1
(i)

f2
(j)

)
= 0, (2.4.7)

where λj,i are the Lagrange multipliers. From
Eqs. (2.4.4) and (2.4.7) we have

m∑
i=1

[(
K1

1′ f
1′

(i)

−
m∑
j=1

λj,i f
1

(j)

)
δ f1
(i)

+
(
K1

1′ f1
(i)

−
m∑
j=1

λi,j f1′
(j)

)
δ f1

′

(i)

]
= 0. (2.4.8)

Hence,

K1
1′ f

1′

(i)

=

m∑
j=1

λj,i f
1

(j)

, i = 1, 2, . . . ,m (2.4.9)

and

K1
1′ f1

(i)

=

m∑
j=1

λi,j f1′
(j)

, i = 1, 2, . . . ,m. (2.4.9′)

Since Ĥ(2) is a self-adjoint operator, it follows that
K(1) is a self-adjoint operator and λj,i = λi,j . Then
Eqs. (2.4.9) are equivalent to Eqs. (2.4.9′) and we may
restrict ourselves to Eqs. (2.4.9). Equations (2.4.9) are
necessary conditions for the minimizing basic manifold
M and will be called the generalized self-consistent �eld
equations [2]. In the case m = N the generalized self-
-consistent �eld equations are equivalent to the Hartree�
Fock equations [4, 5].
From Eqs. (2.4.9) we see that the minimizing ba-

sic manifold M is an invariant subspace of the opera-
tor K(1). Hence, the operator K(1) and the projector P

M
commutate. i.e.

[K(1), P
M

] = K(1) P
M
− P
M
K(1) = 0. (2.4.10)

Equation (2.4.10) is equivalent to Eqs. (2.4.9).

2.5. The best multicon�gurational approximations
2.5.1. The best 1-particle approximation
A set S(1) = {X(1) = X(1) :M→M} of self-adjoint

operators X(1) in M is a real linear space, whose di-
mension is m2 (m = dimM). Hence a set S1(N) =
NS(1) ∧ P∧(N−1)

M
= {NX(1) ∧ P∧(N−1)

M
: X(1) ∈ S(1)}

is a real linear space of 1-particle observables in M∧N .
By S

M
(N) we denote

((
m
N

)2
-dimensional

)
a real Hilbert

space of all Hermitian operators inM∧N with the scalar
product

〈X(N)|Y (N)〉 = Tr(X(N)Y (N)),

X(N), Y (N) ∈ S
M
(N), (2.5.1)

then S1(N) is a real linear subspace of S
M
(N) and

Ĥ
M
(N) ∈ S

M
(N). As a result there exists one and only one

element Ĥ
1
(N) ∈ S1(N) which minimizes the Hilbert�

Schmidt norm

| Ĥ(N)
M
− Ĥ

1
(N)| =

(
Tr(H
M
(N)−H1(N))2

)1/2

(2.5.2)

of Ĥ
M
(N)−Ĥ

1
(N) induced by the scalar product (2.5.1) [6].

The operator Ĥ
1
(N), so called the best 1-particle ap-

proximation of Ĥ
M
(N), has the form

Ĥ
1
(N) = NL(1) ∧ P∧(N−1)

M
, (2.5.3)

where

L(1) =
(N − 1)

(
m
2

)
(m− 2)

(
m
N

)
×
[
2K
M
(1)− (m− 1)−1(Tr K

M
(1)) P

M

]
(2.5.4)

is the so-called 1-particle component of Ĥ
1
(N). Above

K
M
(1) = P

M
K(1) P

M
, and K(1) is given by (2.4.5).

The operator Ĥ
1
(N) has the following important prop-

erties:

(i) its average energy is equal to the average energy of

the Hamiltonian Ĥ(N) onM∧N , i.e.
Tr Ĥ

1
(N)

TrP∧N
=

TrĤ(N)P∧N

TrP∧N
, (2.5.5)

(ii) if M is the minimizing base manifold, the opera-

tor Ĥ
1
(N) is invariant under the symmetry group of the

Hamiltonian Ĥ(N).

The eigenstructure of L(1) uniquely determines the

eigenstructure of Ĥ1(N). If L(1) has eigenvalues Ea
and eigenspacesMa, a = 1, 2, . . . , A the eigenvalues and
eigenspaces of Ĥ

1
(N) are given by the formulae

E(1,N) =

A∑
a=1

NaEa, M∧N =M∧N1
1 ∧ . . . ∧M∧NA

A .

(2.5.6)

AboveN is the so called occupation-number vector which
is de�ned as a sequence N = {Na}Aa=1 of non-negative in-

tegers such that 0 ≤ Na ≤ dimMa,
∑A
a=1Na = N . In

turnM∧N is a natural con�guration of the index N i.e.
the linear hull of the Slater determinants of N 1-particle
functions among which there are exactly Na independent
ones from Ma, for each a. Denoting by PN the projector

ontoM∧N we may now write the spectral decomposition
of Ĥ

1
(N) in the form

Ĥ
1
(N) =

∑
N

E(1,N)PN . (2.5.7)

2.5.2. The best coarse-grained con�gurational
approximation

Now we modify the best 1-particle approximation get-
ting a better approximation to Ĥ

M
(N). To do this let us

consider the real linear space S2(N) of operators of the
type

X(N) =
∑
N

xNPN , (2.5.8)

where xN are the real numbers. The S2(N) is the sub-
space of the space S

M
(N) and therefore contains a unique

operator Ĥ2(N) which minimizes the Hilbert�Schmidt
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norm of Ĥ
M
(N) − Ĥ

2
(N), i.e. | Ĥ

M
(N) − Ĥ

2
(N)| = min.

The operator Ĥ
2
(N) so called the best coarse-grained

con�gurational approximation of Ĥ
M
(N) has the form∑

N E(2,N)PN , where

E(2,N) =
Tr(Ĥ(N)PN )

TrPN
(2.5.9)

are eigenvalues of Ĥ
2
(N) and coincide with the average

values of Ĥ(N) on eigenspaces M∧N . The eigenvalues
E(2,N) may also be written in terms of the con�gura-

tional averages of the operator Ĥ(2) (see Eq. (2.1.4)),
i.e.

E(2,N) =

A∑
a=1

(
Na
2

)
Ea,a +

∑
1≤a<b≤A

Ea,b, (2.5.10)

where

Ea,b =
Tr(Ĥ(2)(Pa ∧ Pb))

Tr(Pa ∧ Pb)
. (2.5.11)

Pa, a = 1, 2, . . . , A are projectors onto eigenspaces Ma,
a = 1, 2, . . . , A of operator L(1) given by Eq. (2.5.4).

The operator Ĥ
2
(N) has the following properties:

(i) its average energy on the natural con�guration
M∧N is equal to the average energy of the Hamiltonian
Ĥ(N) on the same natural con�guration, i.e.

Tr(Ĥ
2
(N)PN )

TrPN
=

Tr(Ĥ(N)PN )

TrPN
, (2.5.12)

(ii) if M is a minimizing base manifold, the operator

Ĥ
2
(N) is invariant under the symmetry group of Ĥ(N).

3. Application of the best multicon�gurational

approximations for atomic ions

3.1. Hamiltonian of an atomic ion

Consider the non-relativistic Hamiltonian (in atomic
units)

H(N,Z) =

N∑
i=1

−
(
1

2
∆i +

Z

ri

)
+

∑
1≤i<j≤N

1

ri,j

=
∑

1≤i<j≤N

−
(

1
2∆i +

Z
ri

)
+
(

1
2∆j +

Z
rj

)
N − 1

+
1

ri,j


(3.1.1)

of an atomic ion (N,Z) with N electrons and nuclear
charge Z.
Rescaling the space coordinates, r → r/Z we obtain

H(N,Z) =
Z2

N − 1

∑
1≤i<j≤N

Hλ[i, j]⊗ I[1, . . . , i− 1,

i+ 1, . . . , j − 1, j + 1, . . . , N ], (3.1.2)

where

Hλ[i, j] = F [i] + F [j] + λV [i, j]. (3.1.3)

Above F [i] is the Hamiltonian of the hydrogen atom,

V [i, j] is the Coulomb interaction potential between two
electrons, i.e.

F [i] = −
(
1

2
∆i +

1

ri

)
, (3.1.4)

V [i, j] =
1

ri,j
(3.1.5)

and λ = N−1
Z is the reciprocal of the reduced nuclear

charge ξ = Z
N−1 [2]. From Eq. (3.1.2) the antisymmetri-

cal projection Ĥ(N,Z) of H(N,Z) is in the following form:

Ĥ(N,Z) =
Z2

N − 1

(
N

2

)
Ĥλ(2) ∧ Î(N − 2), (3.1.6)

where

Ĥλ(2) = 2F (1) ∧ I(1) + λV̂ (2) (3.1.7)

is the antisymmetrical projection of Hλ[i, j] onto H∧2.

3.2. The minimizing basic manifold of Ĥ(N,Z)

and its canonical decomposition

The minimizing basic manifold of the Hamiltonian
Ĥ(N,Z) ful�lls the variational condition (cf. Eqs. (2.3.1),
(3.1.6), (2.4.1)):

E
M

[
Ĥ(N,Z)

]
=

Tr(Ĥ(N,Z) P∧N
M

)

Tr P∧N
M

=
Z2

N − 1

(
m
N

)(
m
2

) Tr(Ĥλ(2)P
∧2
M

) = min . (3.2.1)

From Eq. (3.2.1) follows that the ions (N,Z) having the
same reduced nuclear charge ξ = λ−1, have the same
minimizing basic manifoldsMλ.

The necessary condition for the minimizing basic man-
ifolds Mλ of Ĥ(N,Z) have the form (cf. Eqs. (3.2.1),
(2.4.10), (2.4.5), (2.4.6)):[

(Ĥλ(2)|Pλ), Pλ
]
= 0, (3.2.2)

where Pλ is the projector onto Mλ. Operators
(Ĥλ(2)|Pλ) and Pλ commutate.

Equation (3.2.2) will be solved by means of canoni-
cal transformations [3, 7] with the perturbation param-
eter λ, which for atomic ions satis�es the inequality
0 ≤ λ < 1. In the case of vanishing interactions, i.e.
λ = 0 the Hamiltonian of the system takes the form
Ĥ(N,Z) = Z2NF (1)∧ Î(N −1) which denotes the Hamil-
tonian of N non-interacting electrons moving in the �eld
of the atomic nucleus with the charge Z. For λ = 0 the
minimizing basic manifolds may be calculated immedi-
ately from the variational principle (3.2.1), which may
be rewritten as follows:

TrF (1)P0 = min . (3.2.3)

From Eq. (3.2.3) we can see that the projectors P
(k)
0

on the minimizing basic manifoldsM(k)
0 are in the form

P
(k)
0 =

k∑
n=1

R
(n)
0 , k = 1, 2, 3, . . . (3.2.4)

where R
(n)
0 is the projector on the hydrogen atom

eigenspace corresponding to the eigenvalue en = − 1
2n2 .
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In the case λ 6= 0 we seek the minimizing basic mani-

foldM(k)
λ in the following form:

M(k)
λ = P

(k)
λ H, (3.2.5)

where the projector P
(k)
λ on M(k)

λ is a canonical trans-

formation of P
(k)
0 , i.e.

P
(k)
λ = UλP

(k)
0 U+

λ (3.2.6)

andH is the Hilbert space of square integrable 1-electrons
functions including spin. For the canonical transforma-
tion Uλ we postulate the following form:

Uλ = exp(i(λD1 + λ2D2 + λ3D3 + . . .)), (3.2.7)

where Dj , j = 1, 2, . . . are self-adjoints operators.

There is a class of operators Uλ in the form (3.2.7)
which by (3.2.6) satisfy Eq. (3.2.2). We denote the pro-
jector on the common eigenspace of the Hamiltonian of
the hydrogen atom F (1) and of the operator of the square
of the angular momentum corresponding to the eigenval-

ues en = −1
2n2 and l(l+1) by R

(n,l)
0 . The requirement that

R
(n,l)
λ = UλR

(n,l)
0 U+

λ , 0 ≤ l < n ≤ k (3.2.8)

are projectors on invariants subspaces of the operator

(Ĥλ(2)|P (k)
λ ), i.e.[

(Ĥλ(2)|P (k)
λ ), R

(n,l)
λ

]
= 0, 0 ≤ l < n ≤ k (3.2.9)

restrict considerations to the canonical transformations
invariant under the three-dimensional rotation group of
the system.

The transition from Eq. (3.2.2) to Eqs. (3.2.9) is con-
nected with the transition from an arbitrary unitary

transformation Uλ : M(k)
0 = P

(k)
0 H → M

(k)
λ = P

(k)
λ H

to the unitary transformation Uλ :M(n,l)
0 = R

(n,l)
0 H →

M(n,l)
λ = R

(n,l)
λ H preserving the decomposition of the

minimizing basic manifoldM(k)
λ on the subspacesM(n,l)

λ ,
0 ≤ l < n ≤ k which are non-reduced under the three-
-dimensional rotation group of the system. Indeed, from
the relations

R
(n)
0 =

n−1∑
l=0

R
(n,l)
0 , (3.2.10)

and Eqs. (3.2.4), (3.2.6), (3.2.8) it follows that:

P
(k)
λ =

k∑
n=1

n−1∑
l=0

R
(n,l)
λ (3.2.11)

or equivalently

M(k)
λ =

k∑
n=1

n−1∑
l=0

M(n,l)
λ . (3.2.11′)

The subspaces M(n,l)
λ are the eigenspaces of the

1-particle component of the best 1-particle approxima-
tion of Ĥ(N,Z). Indeed, the best 1-particle approxima-
tion of Ĥ(N,Z) has the following form:

Ĥ
1

(N,Z)
λ = NLλ(1) ∧ (P

(k)
λ )∧(N−1), (3.2.12)

where the 1-particle component Lλ(1) has the form

Lλ(1) =
Z2

mk − 2

[
2P

(k)
λ (Ĥλ(2)|P (k)

λ )P
(k)
λ

− (mk−1)−1Tr
(
P

(k)
λ (Ĥλ(2)|P (k)

λ )
)
P

(k)
λ

]
, (3.2.13)

where the magic number mk = dimM(k)
λ = TrP

(k)
λ =

1
3k(k+1)(2k+1). From Eqs. (3.2.13), (3.2.11) and (3.2.9)

we see thatM(n,l)
λ are eigenspaces of Lλ(1). In turn the

eigenvalues of Lλ(1) are in the following form:

e
(n,l)
λ =

Tr
(
Lλ(1)R

(n,l)
λ

)
TrR

(n,l)
λ

=
Z2

mk − 2

[
Tr
(
(Ĥλ(2)|P (k)

λ )R
(n,l)
λ

)
(2l + 1)−1

− (mk − 1)−1Tr
(
P

(k)
λ ((Ĥλ(2)|P (k)

λ )
) ]
. (3.2.14)

Because M(n,l)
λ , 0 ≤ l < n ≤ k are the eigenspaces

of Lλ(1), the decomposition (3.2.11′) will be called the
canonical decomposition of the minimizing basic mani-

foldM(k)
λ .

3.3. Determining the canonical transformation Uλ

Equations (3.2.9) may be rewritten in the following
form:[

U+
λ (Ĥλ(2)|P (k)

λ )Uλ, R
(n,l)
0

]
= 0, 0 ≤ l < n ≤ k

(3.3.1)

or equivalently

R
(n′,l′)
0 U+

λ (Ĥλ(2)|P (k)
λ )UλR

(n′′,l′′)
0 = 0,

(n′, l′) 6= (n′′, l′′), min(n′, n′′) ≤ k. (3.3.1′)

By substituting the canonical transformation Uλ =

exp(i(λD1+λ
2D2+λ

3D3+ . . .)) into U
+
λ (Ĥλ(2)|P (k)

λ )Uλ
and expanding it in powers of λ one obtains

U+
λ (Ĥλ(2)|P (k)

λ )Uλ =
1

2

(
mkF (1)− F (1)P (k)

0

− P (k)
0 F (1) + (TrF (1)P

(k)
0 )I(1)

)
+

∞∑
j=1

λj
{
1

2

[
mkFj(1)− Fj(1)P (k)

0 − P (k)
0 Fj(1)

+ (TrFj(1)P
(k)
0 )I(1)

]
+ (V̂j−1(2)|P (k)

0 )

}
, (3.3.2)

where

Fj(1) =

j∑
p=1

(−i)p

p!

∑
j1+...+jp=j

[Dj1 , [Dj2, . . .

. . . [Djp , F (1)] . . .]], j = 1, 2, 3, . . . (3.3.3)

and

V̂0(2) = V̂ (2),

V̂j(2) =

j∑
p=1

(−i)p

p!

∑
j1+...+jp=j

[Gj1 , [Gj2, . . .

. . . [Gjp , V̂ (2)] . . .]], j = 1, 2, 3, . . . (3.3.3′)

where

Gj = 2Dj ∧ I(1), j1 ≥ 1, . . . , jp ≥ 1.

From Eqs. (3.3.1′) and (3.3.2) it immediately follows that
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for (n′, l′) 6= (n′′, l′′), min(n′, n′′) < k:

R
(n′,l′)
0

{
mkF (1)− F (1)P (k)

0 − P (k)
0 F (1)

+ [TrF (1)P (k)]I(1)
}
R

(n′′,l′′)
0 = 0 (3.3.4)

and

R
(n′,l′)
0

{
mkFj(1)− Fj(1)P (k)

0 − P (k)
0 Fj(1)

+ [TrFj(1)P
(k)
0 ]I(1) + 2(V̂j−1(2)|P (k)

0 )
}
R

(n′′,l′′)
0 = 0.

(3.3.4′)

Equation (3.3.4) is an identity, because the operators

P
(k)
0 , R

(n,l)
0 commutate with the Hamiltonian F (1).

Substituting Eq. (3.3.3) into Eq. (3.3.4′) and using the
relation

F (1)R
(n,l)
0 = R

(n,l)
0 F (1) = enR

(n,l)
0 (3.3.5)

we obtain

R
(n′,l′)
0 DjR

(n′′,l′′)
0 =

R
(n′,l′)
0 T

(n′,n′′)
j R

(n′′,l′′)
0

en′ − en′′
, (3.3.6)

where

T
(n′,n′′)
1 =

2i(V̂ (2)|P (k)
0 )

mk −Θk,n′ −Θk,n′′
,

T
(n′,n′′)
j =

j∑
p=2

(−i)p−1

p!

∑
j1+...+jp=j

[Dj1 , [Dj2, . . .

. . . [Djp , F (1)] . . .]] +
2i(V̂j−1(2)P

(k)
0 )

mk −Θk,n′ −Θk,n′′
,

j = 2, 3, 4, . . . (3.3.6′)

and

j1 ≥ 1, . . . , jp ≥ 1, Θk,n =

{
0, k < n,

1, k ≥ n.

For n′ 6= n′′, we sum up both sides of Eq. (3.3.6) over l′

and l′′ (0 ≤ l′ < n′, 0 ≤ l′′ < n′′) and obtain

R
(n′)
0 DjR

(n′′)
0 =

R
(n′)
0 T

(n′,n′′)
j R

(n′′)
0

en′ − en′′
,

min(n′, n′′) ≤ k. (3.3.7)

Equations (3.3.7) determine uniquely the non-diagonal

blocks R
(n′)
0 DjR

(n′′)
0 of the operators Dj , j = 1, 2, . . .,

which are in turn determined by the blocks R
(n′)
0 DjR

(n′′)
0

of operators Dt, t = 1, 2, . . . , j − 1.

The minimal operator Dj in the sense of the Hilbert�
Schmidt norm which ful�ls Eqs. (3.3.7) has diagonal

blocks equal to zero, i.e. R
(n)
0 DjR

(n)
0 = 0. Hence

Dj =
∑
n′ 6=n′′

min(n′,n′′)≤k

R
(n′)
0 T

(n′,n′′)
j R

(n′′)
0

en′ − en′′
. (3.3.8)

Operators Dj have the property:
(i) they are invariant under the three-dimensional rota-
tion group,
(ii) their Hilbert�Schmidt norms are �nite.

3.4. Approximate energy levels of the atomic ions

We will calculate the approximate energy levels of the
Hamiltonians Ĥ(N,Z) of atomic ions (N,Z). In the �rst

approximation the energy levels of Ĥ(N,Z) are treated as
eigenvalue of the best 1-particle approximation of Ĥ(N,Z)

and in the second approximation the energy levels of
Ĥ(N,Z) are treated as the eigenvalues of the best coarse-
-grained con�gurational approximation of Ĥ(N,Z).

3.4.1. Eigenvalues of the best 1-particle approximation

According to Eqs. (3.2.14), (3.2.11) and (3.2.8) the

eigenvalues e
(n,l)
λ of the 1-particle component Lλ(1) are

in the following form:

e
(n,l)
λ =

Z2

mk − 2

{
(2l + 1)

k∑
n1=1

n1−1∑
l1=0

Tr(U+
λ (Ĥλ(2)

|R(n1,l1)
λ )UλR

(n,l)
0 ))− (mk − 2)−1

×
k∑

n1=1

n1−1∑
l1=0

k∑
n2=1

n2−1∑
l2=0

Tr(U+
λ (Ĥλ(2)|R(n1,l1)

λ )

× UλR(n2,l2)
0 ))

}
. (3.4.1)

Similarly as Eq. (3.3.2) we obtain

U+
λ (Ĥλ(2)|R(n,l)

λ )Uλ =
1

2

{
2(2l + 1)F (1)

− 2F (1)R
(n,l)
0 +

[
Tr(F (1)R

(n,l)
0 )

]
I(1)

}
+

∞∑
j=1

λj
{
1

2

[
2(2l + 1)Fj(1)− Fj(1)R(n,l)

0

−R(n,l)
0 Fj(1) + (Tr(Fj(1)R

(n,l)
0 ))I(1)

]
+ (V̂j−1(2)|R(n,l)

0 )

}
. (3.4.2)

Then the expansion of Tr(U+
λ (Ĥλ(2)|R(n1l1)

λ )UλR
(n2,l2)
0 )

in powers λ is in the following form:

Tr
(
U+
λ (Ĥλ(2)|R(n1,l1)

0 )UλR
(n2,l2)
0

)
= e0(n1, l1, n2, l2) + λe1(n1, l1, n2, l2)

+ λ2e2(n1, l1, n2, l2) + . . . , (3.4.3)

where

e0(n1, l1, n2, l2) = (2l1 + 1)Tr(F (1)R
(n2,l2)
0 )

+ (2l2 + 1)TrF (1)R
(n1,l1)
0

− Tr(F (1)R
(n1,l1)
0 )δn1,n2δl1,l2 ,

ej(n1, l1, n2, l2) = (2l1 + 1)Tr(Fj(1)R
(n2,l2)
0 )

− Tr(Fj(1)R
(n1,l1)
0 )δn1,n2

δl1,l2

+ (2l2 + 1)Tr(Fj(1)R
(n1,l1)
0 )

+ Tr
(
(V̂j−1(2)|R(n1,l1)

0 )R
(n2,l2)
0

)
, j ≥ 1. (3.4.4)

Above Tr(F (1)R
(n,l)
0 ) = 2(2l + 1)en.

From Eqs. (3.4.1) and (3.4.3) one obtains

e
(n,l)
λ = e0(n, l) + λe1(n, l) + λ2e2(n, l) + . . . , (3.4.5)
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where

e0(n, l) = −
1

2

Z2

n2
, (3.4.6)

ei(n, l) =
Z2

mk − 2

{
(2l + 1)−1

k∑
n1=1

n1−1∑
l1=0

ei (n1, l1, n, l)

− (mk − 1)−1
k∑

n1=1

n1−1∑
l1=0

k∑
n2=1

n2−1∑
l2=0

ei(n1, l1, n2, l2)

}
,

i = 1, 2, 3, . . . (3.4.7)

Finally, the eigenvalues of the best 1-particle approxima-
tion (cf. Eqs. (2.5.6), (3.4.5)) are in the following form:

E(1,N) = E
(0)
(1,N) + λE

(1)
(1,N) + λ2E

(2)
(1,N) + . . . , (3.4.8)

where

E
(i)
(1,N) =

k∑
n=1

n−1∑
l=0

N(n,l)ei(n, l), i = 1, 2, 3 . . . (3.4.9)

and the occupation number vector

N =

{
N(n,l) : 0 ≤ l < n ≤ k, 0 ≤ N(n,l) < 2(2l + 1),

k∑
n=1

n−1∑
l=0

N(n,l) = N

}
. (3.4.10)

3.4.2. Eigenvalues of the best coarse-grained
approximation
The �nal formula for the approximation energies of

atomic ions in the case of the best coarse-grained con�g-
urational approximation (cf. Eq. (2.5.10)) is in the fol-
lowing form:

E(2,N) = E
(0)
(2,N) + λE

(1)
(2,N) + λ2E

(2)
(2,N) + . . . , (3.4.11)

where

E
(i)
(2,N) =

Z2

N − 1

[
k∑

n=1

n−1∑
l=0

(N(n,l)

2

)
(2l + 1)(4l + 1)

ei(n, l, n, l)

+

k∑
n1=1

n1−1∑
l1=0

k∑
n2=1
n2 6=n1

n2−1∑
l2=0
l2 6=l1

N(n1,l1)N(n2,l2)

4(2l1 + 1)(2l2 + 1)

× ei(n1, l1, n2, l2)
]
. (3.4.12)

4. Concluding remarks

In this paper we have calculated the formulae for ap-
proximate eigenvalues and eigenspaces of lowest energy
states of the atomic ions using theory of the best multi-
con�gurational approximations.
Both the basic tasks of this method, i.e. problem of

determining the minimizing basic manifold and of deter-
mining the approximate energy levels and eigenspaces are
connected with one another, by the canonical transfor-
mation which transforms the minimizing base manifold
and eigenspaces of the unperturbed system (i.e. with the
interactions between electrons neglected) into the mini-
mizing base manifold and eigenspaces of the perturbed
system.

It was shown that the Hamiltonian Ĥ(N,Z) is propor-
tional to the operator Ĥλ(2) (cf. Eq. (3.1.6)). Hence,
all atomic ions having the same parameter λ have the
same minimizing basic manifolds and eigenspaces (in
unit Z−1).
The �nal formulae for energy levels in 1-particle and

coarse-grained approximation are in the form of a power
series of λ. The coe�cients of the both power series

E
(i)
(1,N) and E

(i)
(2,N) are simply expressed by the coe�cients

ei(n1, l1, n2, l2) (cf. Eq. (3.4.4)).
In separated work author with coworkers will present

numerical calculations of energy levels of atomic ions
(cf. Eqs. (3.4.8), (3.4.11)) and its dependence on the di-
mension of the minimizing basic manifold and number of
components in power series (3.4.8), (3.4.11). Obtained
numerical data will be compared with experimental data.
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