
Vol. 122 (2012) ACTA PHYSICA POLONICA A No. 1

The Ramsauer�Townsend E�ect in the Presence

of the Minimal Length and Maximal Momentum
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The scattering cross-section of electrons in noble gas atoms exhibits the minimum value at electron energies
of approximately 1 eV. This is the Ramsauer�Townsend e�ect. In this letter, we study the Ramsauer�Townsend
e�ect in the presence of both the minimal observable length and the maximal momentum (originating from doubly
special theories) through the generalized uncertainty principle.

PACS: 04.60.−m

1. Introduction

Various approaches to quantum gravity such as string
theory and loop quantum gravity as well as black hole
physics, in contradiction with the Heisenberg uncertainty
principle which in principle agrees with the measurement
of highly accurate results for a particles' positions or mo-
menta, predict the minimum measurable length of the

order of the Planck length, ℓp =
√

G~
c3 ≈ 10−35 m. In the

presence of this minimal observable length, the standard
Heisenberg uncertainty principle attains an important
modi�cation leading to the so-called generalized uncer-
tainty principle (GUP). As a result, corresponding com-
mutation relations between position and momenta are
generalized, too [1].
In recent years a lot of attention has been attracted

to extend the fundamental problems of physics in the
GUP framework [2�13]. Since in the GUP framework
one cannot probe distances smaller than the minimum
measurable length at a �nite time, we expect it modi-
�es the Hamiltonian of physical systems, too (see [5] for
instance). Recently, a GUP is proposed by Ali et al.
which is consistent with the existence of the minimal
measurable length and the maximal measurable momen-
tum [14, 15]. The existence of the maximal particles'
momentum is a consequence of doubly special relativity
theories (see for instance [16]). These natural cuto�s have
their origin in the very nature of spacetime manifold at
the Planck scale.
In this work we will follow the procedure in Ref. [9], but

we are going to address the e�ect of minimal length and
maximal momentum on the Ramsauer�Townsend e�ect.

∗ corresponding author; e-mail: javahedi@iausari.ac.ir

The Ramsauer�Townsend e�ect can be observed as
long as the scattering does not become inelastic by excita-
tion of the �rst excited state of the atom. This condition
is best ful�lled by the closed shell noble gas atoms. Phys-
ically, the Ramsauer�Townsend e�ect may be thought of
as a di�raction of the electron around the rare-gas atom,
in which the wave function inside the atom is distorted
in just such a way that it �ts on smoothly to an undis-
torted wave function outside. The e�ect is analogous to
the perfect transmission found at particular energies in
one-dimensional scattering from a square well. The one-
-dimensional treatment of scattering from a square well
and also three-dimensional treatment using the partial
waves analysis can be found in Ref. [17].

In a recent work we have addressed the quantum grav-
ity e�ects, through existence of just the minimal mea-
surable length encoded in the generalized uncertainty
principle, on the scattering amplitude in the Ramsauer�
Townsend e�ect [18].

Here we generalize that work to the one-dimensional
treatment of the scattering from a square well in the
presence of both the minimal observable length and also
a maximal observable momentum. The existence of the
maximal momentum for scattered particles, brings new
additional correction on the wavelength of scattered par-
ticles leading to a new condition for resonance in the
Fabry�Perot interferometer. In this respect, we address
the condition for interference in the Fabry�Perot inter-
ferometer in the presence of minimal observable length
and the maximal observable momentum. We note that
modi�cation to the transmission rate due to the existence
of the minimal length and the maximal momentum stud-
ied here, becomes important at or above the Planck en-
ergy. Although these modi�cations are too small to be
measurable at present, we speculate on the possibility of
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extracting measurable predictions in the future. Any ex-
perimental evidence of these predictions may provide a
direct test of underlying quantum gravity scenario.

2. The generalized uncertainty principle

The following GUP which was proposed by Ali et al.
[14, 15] is consistent with black hole physics and string
theory and ensures space and momentum commutation
relations ([Xi, Xj ] = 0 and [Pi, Pj ] = 0) separately

[Xi, Pj ] = i~
[
δij − α

(
Pδij +

PiPj

P

)
+α2

(
P 2δij + 3PiPj

)]
, (1)

where α = α0/MPlc = α0ℓPl/~, MPl is the Planck mass,
ℓPl is the Planck length ≈ 10−35 m, and MPlc

2 is the
Planck energy ≈ 1019 GeV. It is normally assumed that
α0 ≈ 1. Using the above commutation relations, we
can obtain the generalized uncertainty relation in one-
-dimension up to the second order of the GUP parameter
[14, 15]:

∆X∆P ≥ ~
2

[
1− 2α

⟨
P
⟩
+ 4α2

⟨
P 2
⟩]

≥ ~
2

[
1 +

(
α√
⟨P 2⟩

+ 4α2

)
∆P 2 + 4α2

⟨
P
⟩2

− 2α
√⟨

P 2
⟩]
. (2)

The above inequality implies both the minimum length
and the maximum momentum at the same time, namely
[14, 15]:{

∆X ≥ (∆X)min ≈ α0ℓPl,

∆P ≤ (∆P )max ≈ MPlc
α0

.
(3)

We note that while with lower bound for position �uc-
tuations, one can rightfully claim that there is the mini-
mum measurable distance, the way from an upper bound
of momentum �uctuations to the maximum measurable
momentum is not so clear. In fact, existence of an upper
bound for momentum �uctuations just means that mo-
mentum measurements cannot be arbitrarily imprecise,
but it says nothing about the measured momentum or
momentum expectation values. We can also rewrite the
position and momentum operators in terms of new vari-
ables [13]:{

Xi = xi,

Pi = pi
(
1− αp+ 2α2p2

)
,

(4)

where xi and pi obey the usual commutation relations
[xi, pj ] = i~δij . It is straightforward to check that with
this de�nition, Eq. (1) is satis�ed up to O(α2). There-
fore, we can interpret pi and Pi as follows: pi is the mo-
mentum operator at low energies (pi = − i~∂/∂xi) and
Pi is the momentum operator at high energies. More-
over, p is the magnitude of the pi vector (p

2 =
∑3

ij pipj).

To study the e�ects of this kind of GUP on the quantum
mechanical systems, let us consider the following general
Hamiltonian:

H =
P 2

2m
+ V (x), (5)

which using Eq. (4) can be written as

H = H0 + αH1 + α2H2 +O(α3), (6)

where H0 = p2

2m + V (x) and

H1 =
−p3

m
, H2 =

5p4

m
. (7)

In the quantum domain, this Hamiltonian results in the
following generalized Schrödinger equation in the quasi-
-position representation

− ~2

2m

∂2ψ(x)

∂x2
− iα

~3

m

∂3ψ(x)

∂x3
+ 5α2 ~4

m

∂4ψ(x)

∂x4

+V (x)ψ(x) = Eψ(x), (8)

where the second and third terms are due to the gen-
eralized commutation relation (1). This equation is a
4th-order di�erential equation which in principle admits
4 independent solutions. Therefore, solving this equation
in x space and separating the physical solutions is not an
easy task. A transformation to momentum space may
help to overcome this di�culty in some cases.

3. Ramsauer�Townsend e�ect with GUP

For simplicity we restrict ourselves to a one-
-dimensional problem. We choose the following geometry
of the quantum well:

V (x) =

{
−V0, 0 < x < a,

0 elsewhere,
(9)

where V0 is a positive constant and E > 0. The ge-
ometry of the problem is shown in Fig. 1 (we note that
this problem can be treated with more realistic poten-
tials such as the Woods�Saxon potential to have more
reliable results but the calculations become very compli-
cated). The eigenfunctions of a particle in this potential
well in the presence of both minimal length and maximal
momentum satisfy the generalized Schrödinger Eq. (8).

Fig. 1. The geometry of a quantum well.
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So we need to �nd the solutions in three regions which
are indicated in Fig. 1. To proceed further, we can rewrite
Eq. (8) in these regions separately

q2ψ(x)II + d2ψ(x)II + iℓpd
3ψ(x)II

− 5

2
ℓ2pd

4ψ(x)II = 0, (10)

for 0 < x < a, and

k2ψ(x)I,III + d2ψ(x)I,III + iℓpd
3ψ(x)I,III

− 5

2
ℓ2pd

4ψ(x)I,III = 0 (11)

for regions I and III. By de�nition dn ≡ dn

dxn , k =
√

2mE
~2 ,

q =
√

2m(E+V0)
~2 , and ℓp = 2α~. Let us note that the

above equations are fourth-order di�erential equations
which in general admit four independent solutions. How-
ever, some solutions would be unphysical which should
be removed upon imposing the boundary conditions. As-
suming solutions of the form ψI,II,III = emx yields [14]:

m2 + k2 + iℓpm
3 − 5

2
ℓ2pm

4 = 0, in I, III, (12)

m2 + q2 + iℓpm
3 − 5

2
ℓ2pm

4 = 0, in II (13)

with the following solution sets to leading order in α,
each consisting of four values of m:

I, III : m = { ik′,− ik′′,± i/ℓp},

II : m = { iq′,− iq′′,± i/ℓp}, (14)

where

k′ = k
(
1 + kℓp/2− 5k2ℓ2p/4

)
,

k′′ = k
(
1− kℓp/2− 5k2ℓ2p/4

)
,

q′ = q
(
1 + qℓp/2− 5q2ℓ2p/4

)
,

q′′ = q
(
1− qℓp/2− 5q2ℓ2p/4

)
. (15)

The wave functions in the I, II and III regions are

ψI = e ik
′x +Ae− ik′′x +B e

i x
ℓp , (16)

ψII = F e iq
′x +Ge− iq′′x +H e

i x
ℓp + Le

− i x
ℓp , (17)

ψIII = C e ik
′x +De

− i x
ℓp , (18)

respectively, where based on physical grounds we have
omitted the left-mover component from ψIII and the ex-
ponentially growing terms from both ψI and ψIII [9]. In
comparison to the case that there is just the minimal ob-
servable length, we see the appearance of an oscillatory
term here with characteristic wavelength 2πℓp and mo-
mentum 1/4α = ~/4ℓpα0. This is due to existence of the
maximal momentum in this case. Now, the boundary
conditions consist of eight equations as follows:

dnψI|x=0 = dnψII|x=0, n = 0, 1, 2, 3, (19)

dnψII|x=a = dnψIII|x=0, n = 0, 1, 2, 3. (20)

By setting k′ = k′′ and q′ = q′′ in the above equation,
the solutions are similar to the solutions of the ordi-

nary quantum mechanics but with modi�ed wave num-
ber. Now the boundary conditions are the continuity of
the wave function and its �rst derivative at the bound-
aries. The resulting equations can be solved analytically
to obtain the coe�cients A, B, C, and D. For our pur-
poses, the solution for A is as follows:

A =
(k′2 − q′2) sin(q′a)

(k′2 + q′2) sin(q′a) + 2ik′q′ cos(q′a)
. (21)

So the re�ection coe�cient is given by

R = |A|2 =
(k′2 − q′2)2 sin2(q′a)

(k′2 + q′2)2 sin2(q′a) + 4k′2q′2 cos2(q′a)
.

(22)

By using Eq. (15) we can write the re�ection coe�cient
in terms of the physical wave numbers as

R =

[
Q sin2

(
q

(
1− ℓp

2
q −

5ℓ2p
4
q2

)
a

)]
/[

P sin2

(
q

(
1− ℓp

2
q −

5ℓ2p
4
q2

)
a

)

+Z cos2

(
q

(
1− ℓp

2
q −

5ℓ2p
4
q2

)
a

)]
, (23)

where by de�nition

Q ≡

[(
k

(
1− ℓp

2
k −

5ℓ2p
4
k2

))2

−

(
q

(
1− ℓp

2
q −

5ℓ2p
4
q2

))2]2
,

P ≡

[(
k

(
1− ℓp

2
k −

5ℓ2p
4
k2

))2

+

(
q

(
1− ℓp

2
q −

5ℓ2p
4
q2

))2]2
,

Z ≡

[
k

(
1− ℓp

2
k −

5ℓ2p
4
k2

)
q

(
1− ℓp

2
q −

5ℓ2p
4
q2

)]2
.

For the special case where sin
(
q
(
1− ℓp

2 q−
5ℓ2p
4 q

2
)
a
)
= 0,

there is no re�ection that is R = 0 and therefore we
will have maximum transmission. This is the Ramsauer�
Townsend e�ect. In this case

q

(
1− ℓp

2
q −

5ℓ2p
4
q2

)
=
nπ

a
. (24)

In ordinary quantum mechanics this e�ect occurs at those
wave numbers that satisfy the condition qord = nπ

a . This
feature shows that there is a shift (∆q = q − qord) in the
wave number of the transmission resonance and this shift
itself is wave number dependent. So, up to the �rst order
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in the GUP parameter we have

∆q ≃ ℓp
2

(nπ
a

)2
+

5ℓ2p
4

(nπ
a

)3
. (25)

We also note that in ordinary quantum mechanical de-
scription, the condition for resonance is λord = 2π

q =
2a
n which is the same condition as in the Fabry�Perot
interferometer. In the presence of the minimal length
and maximal momentum, this condition modi�es as fol-
lows

λ′ =
2π

q′
≃ 2π

q

(
1 +

ℓp
2
q +

5ℓ2p
4
q2

)

= λord

(
1 +

ℓp
2
q +

5ℓ2p
4
q2

)
. (26)

Therefore, in the presence of the minimal length and
maximal momentum, the condition for interference in the
Fabry�Perot interferometer will change. Amazingly, this
change is itself wavelength dependent.

4. Conclusion

The scattering cross-section of electrons in noble gas
atoms exhibits the minimum value at electron energies
of approximately 1 eV, an e�ect of which is called the
Ramsauer�Townsend e�ect. We studied the Ramsauer�
Townsend e�ect in the presence of minimal length and
maximal momentum in the framework of a newly pro-
posed generalized uncertainty principle. We have shown
that in the presence of the minimal length and maximal
momentum there is a shift (∆q = q − qord) in the wave
number of the transmission resonance and this shift itself
is wavenumber dependent. This shift also a�ects the res-
onance wavelength in the Fabry�Perot interferometer in
such a way that this change is itself wavelength depen-
dent. If in future experiments one �nds a similar shift in
the Fabry�Perot interferometer resonance wavelength, it
will be a footprint of quantum gravity e�ect.
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