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In the framework of the Eliashberg formalism, we have calculated the thermodynamic properties of the
superconducting state in K3C60 (the critical temperature TC = 19.50 K). We have obtained the following
results: (i) The critical value of the Coulomb pseudopotential is equal to 0.387. (ii) The values of the ratios
R1 ≡ 2∆(0)/kBTC and R2 ≡ ∆C(TC)/CN(TC) are bigger than in the BCS model; R1 = 4.01 and R2 = 1.58.
(iii) The electron effective mass m∗

e reaches the highest value for T = TC; [m∗
e ]max = 2.86me, where me is the bare

electron mass. Additionally, we have given the analytical expressions for TC, ∆(T ), R1 and R2.

PACS numbers: 74.20.Fg, 74.70.Wz

1. Introduction

The superconducting state in K3C60 was discovered in
1991 [1]. Since that time, the thermodynamic properties
of this compound were very intensively studied. The brief
discussion of the achieved results can be found in [2].

Despite the accumulation of the relatively large
amount of the experimental data, none of the proposed
models is still not fully accepted. The existing models of
the superconducting state in K3C60 can be divided into
two principal groups. The first one includes theories as-
suming that the superconducting state is induced by the
electron–phonon interaction [3–6]. The second one con-
tains theories that try to explain the formation of the su-
perconducting state in the framework of the non-phonon
pairing mechanism [7].

Below, we present the experimental data which clearly
indicate that the superconducting phase in K3C60 is in-
duced by the electron–phonon interaction.

First, the non-zero isotope effect was observed. In
the case of the complete substitution of the carbon iso-
tope 12C by 13C the isotope coefficient (α) is equal to
0.3± 0.06 [8]. On the other hand, the very high value of
α equal to 1.43 can be achieved for the partial substitu-
tion [9]. It is worth to notice that the isotope effect is
not created by the alkaline metals; it is evidenced by the
results obtained for the fulleride Rb3C60 where the ru-
bidium isotope 85Rb has been replaced with the isotope
87Rb [10]. On the basis of the quoted facts one should
suppose that the forming of the superconducting phase
in K3C60 is connected with the existence of the coupling
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between electrons and the vibrations of the carbon atoms
in C60 molecules.

Second, the order parameter has a pure s-wave sym-
metry [11–14]. This fact can be explained in a natural
way by taking into consideration an assumption that the
electron–phonon interaction is responsible for the super-
conducting phase induction. Let us notice that the pure
electron pairing mechanism leads to different form of the
wave symmetry; in particular, d-wave symmetry or mixed
symmetry [15].

Some theoretical considerations also confirm our point
of the view. The initial calculations conducted with the
use of the Eliashberg equations indicate that in the case
of K3C60 the electron–phonon interaction can indepen-
dently induce the superconducting phase [16]. According
to that, the precise calculation of the basic thermody-
namic parameters seems to be an essential matter.

In the presented paper, we will determine the most
relevant thermodynamic quantities that characterize the
superconducting phase in K3C60. To achieve that, we
will numerically solve the Eliashberg equations [17].

From the mathematical point of view it is a compli-
cated problem because the Eliashberg equations form a
set of the non-linear equations. Additionally, we will
supplement the numerical analysis by the analytical ap-
proach. The obtained theoretical results will be also com-
pared with the experimental data.

2. The Eliashberg equations

The set of the Eliashberg equations can be written in
the following form [18]:
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Zl∆l =
π

β

M∑
m=1

[K+ (l, m)− 2µ(m)]√
ω2

m + ∆2
m

∆m, (1)

Zl = 1 +
π

β

M∑
m=1

K− (l, m)√
ω2

m + ∆2
m

ωm

ωl
, (2)

where the symbol ∆l ≡ ∆(iωl) denotes the order param-
eter and Zl ≡ Z(iωl) is the wave function renormaliza-
tion factor. The Matsubara frequencies are defined by
the formula: ωl ≡ (π/β)(2l − 1), where β is the inverse
temperature; β ≡ (kBT )−1. In the paper we assume that
the upper limit in the sum (M) is equal to 800.

The functions K±(l,m) are given by the expression:
K±(l, m) ≡ K(l −m) ±K(l + m − 1), where K(l −m)
denotes the pairing kernel

K (l −m) ≡
∫ Ωmax

0

dΩ
α2F (Ω)2Ω

(ωl − ωm)2 + Ω2
. (3)

The Eliashberg function (α2F (Ω)) was determined
in [16]; the value of the maximum phonon frequency
(Ωmax) is equal to 242 meV.

The symbol µ(m) denotes the function that models the
influence of the Coulomb repulsion on the superconduct-
ing state

µ(m) ≡ µ∗CΘ (ωc − |ωm|) , (4)
where the critical value of the Coulomb pseudopotential
(µ∗C) will be calculated in the next section. Symbol Θ
stands for the Heaviside unit function; the phonon cut-
-off frequency (ωc) is equal to 1 eV [16].

3. The numerical and analytical results

3.1. The critical value of the Coulomb pseudopotential

The Coulomb pseudopotential is defined by the expres-
sion: µ∗ ≡ ρ(0)V/[1 + ρ(0)V ln(ωP/ωD)], where ρ(0) is
the electronic density of states at the Fermi level and V is
the Coulomb potential. The symbols ωP and ωD denote
the electronic plasma frequency and the Debye phonon
frequency, respectively [19]. We notice that the critical
value of the Coulomb pseudopotential must be very pre-
cisely determined, otherwise it is impossible to compare
the theoretical predictions with the experimental data
quantitatively. The exact analysis of this issue is pre-
sented below.

In Fig. 1A we show the dependence of the order param-
eter ∆m on the number m for the selected values of µ∗;
calculations were made for T = TC. Results presented
in Fig. 1A prove that for µ∗ < µ∗C the order parameter
takes the highest value always for m = 1. Thus, the
critical value of the Coulomb pseudopotential can be de-
termined by using the condition

[∆m=1 (µ∗C) = 0]T=TC
. (5)

The full dependence of ∆m=1 on µ∗ is shown in Fig. 1B.
On the basis of the achieved results we have obtained
that the critical value of the Coulomb pseudopotential is
equal to 0.387. In comparison with other classical super-
conductors the value of µ∗C for K3C60 is very high [20].

Fig. 1. (A) The order parameter as a function of the
number m for selected values of the Coulomb pseu-
dopotential. In the figure first 200 values of ∆m are
presented. (B) The full dependence of ∆m=1 on the
Coulomb pseudopotential.

3.2. The formula for the critical temperature

For the classical low-temperature superconductors, the
value of the critical temperature is determined by a good
approximation on the basis of the Allen–Dynes (AD) for-
mula [21]:

kBTC = f1f2
ωln

1.2
exp

( −1.04 (1 + λ)
λ− µ∗ (1 + 0.62λ)

)
, (6)

where the parameters and functions included in the ex-
pression (6) are determined in Table.

TABLE
The definitions of quantities in Eq. (6). The parame-
ters λ and ωln are called the electron–phonon coupling
constant and the logarithmic phonon frequency, respec-
tively; ω2 is the second moment of the normalized weight
function: g(Ω) ≡ 2

λΩ
α2F (Ω). The symbols f1 and f2

denote the strong-coupling correction function and the
shape correction function, respectively.

Parameter or function Value

λ ≡ 2
∫ Ωmax
0

dΩ α2F (Ω)
Ω

1.217

ωln ≡ exp
(

2
λ

∫ Ωmax
0

dΩ α2F (Ω)
Ω

ln(Ω)
)

35.66 meV

ω2 ≡ 2
λ

∫ Ωmax
0

dΩα2F (Ω)Ω 9.4 eV

f1 ≡
[
1 +

(
λ
Λ1

) 3
2
] 1

3

f2 ≡ 1 +

(√
ω2

ωln
−1

)
λ2

λ2+Λ2
2

In the case of K3C60 the AD formula does not work.
Particularly, for µ∗C = 0.387 we obtain [TC]AD = 4.9 K
(see also Fig. 2).
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Fig. 2. The critical temperature as a function of the
Coulomb pseudopotential. Dashed line represents the
calculation of TC using the classical Allen–Dynes for-
mula. The black circles correspond to the exact numer-
ical solutions of the Eliashberg equations. Solid line rep-
resents the calculation of TC using our analytical scheme
((7) and (8)). The black arrow denotes the experimental
value of the critical temperature for K3C60.

In the paper, we have modified the classical Allen–
Dynes formula by choosing again the numerical coeffi-
cients in Λ1 and Λ2. We have used the least-squares
analysis and 250 numerical solutions of the Eliashberg
equations for selected values of µ∗. The result has the
form

Λ1 ≡ 2 (1 + 0.05µ∗) , (7)

Λ2 ≡ −0.05 (1− 166µ∗)
(√

ω2

ωln

)
. (8)

The dependence of the critical temperature on the
Coulomb pseudopotential obtained by using the exact
numerical analysis and in the framework of our analyti-
cal scheme is shown in Fig. 2. It is easy to notice that
the agreement is excellent.

3.3. The order parameter function

In the Eliashberg formalism, in order to reconstruct the
experimental dependence of the order parameter on the
temperature, the form of the function ∆m for selected
values of the temperature should be determined in the
first step.

In Fig. 3A we show the order parameter function on
the imaginary axis. We select the following range of the
temperature: T ∈ (4.64, 19.50) K. We notice that for
T < 4.64 K the variation of the order parameter curve is
negligible. This fact is presented in Fig. 3B.

In the next step, the order parameter function on the
real axis should be calculated. It can be done with the use
of the analytical continuation method described in [22].
In the framework of this approach, the order parameter
function is determined as the ratio of two polynomials

∆(ω) =
p∆1 + p∆2ω + . . . + p∆rω

r−1

q∆1 + q∆2ω + . . . + q∆rωr−1 + ωr
, (9)

where p∆n and q∆n are the numerical coefficients. In

Fig. 3. (A) The dependence of the order parameter on
the number m for selected temperatures. In the figure
first 300 values of ∆m are presented. (B) The value
of the order parameter for m = 1 as a function of the
temperature.

our case, the maximum value of the exponent r is equal
to 400.

As an example, in Fig. 4 we show the real (Re) and
imaginary (Im) part of the order parameter on the real
axis, calculated for T = 4.64 K.

Fig. 4. The dependence of the real and imaginary part
of the order parameter on the frequency for T = 4.64 K.

Finally, the value of the order parameter for the given
temperature is determined on the basis of the equation

∆(T ) = Re [∆ (ω = ∆(T ), T )] . (10)
In the case of K3C60, the full dependence of the order

parameter on the temperature can be described by the
following expression:

∆(T ) = ∆ (T1)

√
1−

(
T − T1

TC − T1

)β

, (11)

where T1 = 4.64 K, ∆(T1) = 3.37 meV and β = 1.94.
On the basis of achieved results, we can calculate the

ratio of the order parameter near the zero temperature
(∆(0)) to critical temperature: R1 ≡ 2∆(0)/kBTC. In
particular, we assume that ∆(0) ' ∆(T1). The follow-
ing evaluation is obtained: R1 = 4.01. The above result
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means that the value of R1 is greater than the value pre-
dicted by the BCS theory, where [R1]BCS = 3.53 [23].

Additionally, we compare the theoretical and experi-
mental values of R1. We find that our result is in good
agreement with the NMR data, where R1 = 4.3 [24].
However, the optical and tunneling methods give the val-
ues that differ from our prediction [2, 13].

The numerical analysis of the Eliashberg equations is
the complicated problem, therefore we have derived the
analytical expression for R1:

R1

[R1]BCS

= 1 + 138
(

pa
kBTC

ωln

)2

ln
(

1
pa

ωln

2kBTC

)
, (12)

where the correction pa has the form: pa ≡ f1/3f2.
In obtaining Eq. (12) the spirit of the Mitrović–Zarate–
Carbotte formula was followed [20]. We notice that the
coefficients 138, 2 and 3 were chosen to fit to the numeri-
cal data for 65 selected values of the Coulomb pseudopo-
tential.

3.4. The free energy and the specific heat

We calculate the free energy difference between the su-
perconducting and normal state (∆F ) on the basis of for-
mula originally brought out by Bardeen and Stephen [25]:

∆F

ρ(0)
= −2π

β

M∑
m=1

(√
ω2

m + ∆2
m − |ωm|

)

×
(

ZS
m − ZN

m

|ωm|√
ω2

m + ∆2
m

)
, (13)

where the superscripts S and N denote the superconduct-
ing and normal state, respectively.

The dependence of the free energy difference on the
temperature in the range from 4.64 K to 19.50 K is plot-
ted in Fig. 5A. As it is easy to note, the function ∆F is
increasing with the growth of the temperature, reaching
its maximum equal to zero at T = TC. Negative values of
∆F prove explicitly that below TC the superconducting
phase is thermodynamically stable.

Fig. 5. (A) The free energy difference between the su-
perconducting and normal state as a function of the
temperature. (B) The specific heat in the normal and
superconducting state as a function of the temperature.

On the basis of the function ∆F we calculate the spe-
cific heat difference between the superconducting and
normal state (∆C ≡ CS − CN):

∆C(T )
kBρ(0)

= − 1
β

d2 [∆F/ρ(0)]
d (kBT )2

. (14)

On the other hand, the normal state specific heat can be
determined by using the expression

CN(T )
kBρ(0)

=
γ

β
, (15)

where γ ≡ 2
3π2(1 + λ).

In Fig. 5B we show the dependence of CN and CS on
the temperature. The specific heat jump at TC can be
easily seen.

Below, we calculate the dimensionless ratio R2 ≡
∆C(TC)/CN(TC). In the framework of the BCS theory
the parameter R2 is the universal constant of the model
and [R2]BCS = 1.43 [23]. As a result of the conducted
analysis we have obtained bigger value than in BCS the-
ory: R2 = 1.58. We notice that our value of R2 agree
with the experimental data in the limit of the measure
error; [R2]expt = 2.0± 0.5 [26].

Finally, the value of the ratio R2 can be also calculated
analytically by using the formula

R2

[R2]BCS

= 1 + 195
(

pb
kBTC

ωln

)2

ln
(

1
pb

ωln

3kBTC

)
, (16)

where pb ≡ f1/4f2. We have chosen the coefficients 195,
3, and 4 from fits to the numerical data for 50 selected
values of µ∗. We have derived the expression (16) in the
scheme proposed by Marsiglio and Carbotte [27].

3.5. The electron effective mass

The electron–phonon coupling leads to the increase of
the electron effective mass (m∗

e). In the framework of the
Eliashberg formalism, the ratio of the electron effective
mass to the bare electron mass (me) is given, within a
good approximation, by the value of the wave function
renormalization factor for m = 1.

In Fig. 6 we show the dependence of the wave function
renormalization factor on the number m for selected val-
ues of the temperature. It can be noticed that for m = 1
there is always a correspondence of the maximum value
of the wave function renormalization factor. The inset in
Fig. 6 presents a full dependence of Zm=1 on the temper-
ature. On the basis of the plotted curve we claim that
the effective mass takes the highest value for T = TC.

Below we calculate precisely the electron effective mass
for T = TC. To achieve that, the expression m∗

e/me =
Z(0) was used, where Z(0) is the value of the wave func-
tion renormalization factor on the real axis for ω = 0.
The function Z(ω) can be determined on the basis of the
analytical continuation theorem [22]. In our case

Z(ω) =
pZ1 + pZ2ω + . . . + pZrω

r−1

qZ1 + qZ2ω + . . . + qZrωr−1 + ωr
, (17)

where pZn and qZn are the number coefficients, r is equal
to 400.
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Fig. 6. The dependence of the wave function renormal-
ization factor on the number m for selected values of the
temperature. In the inset there is a maximum value of
the wave function renormalization factor as a function
of the temperature.

Fig. 7. The real and imaginary part of the wave func-
tion renormalization factor on the real axis.

In Fig. 7 we show the dependence of the real and imag-
inary part of the wave function renormalization factor on
the frequency. For ω = 0 the non-zero value is taken only
by a real part: Re[Z(0)] = 2.862. The above result proves
that in K3C60 the electron–phonon interaction strongly
renormalizes the electron effective mass.

4. Concluding remarks

In the paper, we have determined the thermodynamic
properties of the superconducting state in the K3C60.

In the first step, we have shown that the critical value
of the Coulomb pseudopotential is equal to 0.387. It is a
high value in comparison with the value of µ∗C calculated
for other classical superconductors [20].

In the second step, we have given the modified Allen–
Dynes formula which reproduces very well the experimen-
tal value of the critical temperature. We have determined
also the dependence of the order parameter on the tem-
perature. The obtained results enabled the calculation
of the ratio R1 whose value equals 4.01. At this moment
it is difficult to state whether the theoretical value of R1

agrees with the experimental value because the experi-
mental results given in the literature significantly differ.

Next, we have calculated the dependence of the free
energy difference on the temperature. By using the func-
tion ∆F we have estimated the specific heat-jump at TC

and the value of the ratio R2 (1.58). We have shown that
the theoretical value of R2 agrees with the experimental
result in the limit of the measure error.

In the last step, we have calculated the electron ef-
fective mass. We have shown that the effective mass
reaches the highest value for T = TC. The following esti-
mation was obtained: [m∗

e ]max = 2.862me. The above re-
sult proves that the electron–phonon interaction strongly
renormalizes the electron effective mass.

In the future, we will answer the question whether in
the case of K3C60 the vertex corrections for electron–
phonon interaction have a really relevant meaning [28].
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