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This paper presents fundamental principles, characteristics, and lim-
itations of various experimental methods of cooling and trapping of neu-
tral atoms by laser light and magnetic fields. In addition to surveying the
experimental techniques, basic properties of quantum degenerate gases are
discussed with particular emphasis on the Bose—Einstein condensate. We
also present main parameters and expected characteristics of the first Pol-
ish Bose—FEinstein condensate apparatus built in the National Laboratory of
Atomic, Molecular, and Optical Physics in Torun, Poland.
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1. Introduction

Bose-Einstein condensation is a peculiar phenomenon of quantum degener-
acy characteristic of non-interacting Bose particles at sufficiently low temperature
and high density.

The achieving of the Bose—FEinstein condensation in atomic gases has been
awarded with Nobel Prize for E. Cornell, W. Ketterle, and C. Wieman in 2001 but
its roots are more than 75 years older. In 1924, Satyendranath Bose [1] derived
Planck’s law from the principles of statistical physics and in 1925 Albert Ein-
stein [2] generalized that work to mass-particles and discovered the existence of
the phase transition at low temperatures which is now known as the Bose—FEinstein
condensation. The idea remained abstract for a long time even for the authors;
Einstein himself wrote: The theory is pretty but is there also some truth {o it?

(577)
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2. Basic principles

Bose-Einstein condensation (BEC) can be analyzed from two different per-
spectives: (a) statistical physics and (b) matter waves of quantum degenerate
particles.

2.1. Statistical picture

Starting from the partition function for bosons in temperature 7'

1
1= T W

where € stands for the particle energy, p is the chemical potential, and g =
1/ksT (kp being the Boltzmann constant), and using the normalization condi-
tion N = 3"_ f(e), one can express the total number of particles as

v =N+ [ e (2)

Ny denotes here the number of particles in the ground state, and p(e) represents
density of energy states. Below a certain critical temperature, the integral in Eq. (2)
becomes much smaller than N i.e., most of particles are in the ground state.
This populating of the ground state occurs as a phase transition at a critical
temperature, as visualized in Fig. 1.
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Fig. 1. Solid line shows population of atomic ground state versus temperature in units
of critical temperature T (7c depends on atomic density N). Circles are experimental

results from [3] (reproduced with kind permission of the authors).

2.2. Matter wave picture

The de Broglie wavelength of the particles depends on their momentum, and
therefore, on temperature. It is given by Agp = (27h%/mkpT)*/2. In a medium of
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particle density n and mean distance between particles n=1/3_ the indistinguisha-
bility of quantum objects becomes important when the de Broglie wavelength
becomes comparable to the inter-particle distance, n=1/3 & A4p. One speaks then
about quantum degeneracy, i.e., about B-E condensation for bosonic particles.
In principle, this condition can be achieved either by increasing the de Broglie
wavelength (decrease in temperature) or by decreasing the distance between par-
ticles (increase in density). The two solutions are not equivalent as the latter
enhances the inter-particle interactions and one cannot speak any more of free
particles. It is instructive to compare orders of magnitude typical of the thermal
and condensed gas samples. For atom gas at a temperature of 900 K with a density
n & 1016 cm~3 and mean distance n=1/3 &~ 10~7 m, Aqg & 1072 m. One has in
this case Agp < n~/3. On the other hand, with about N = 10% cold atoms in a

=1/3 i.e., quantum degeneracy occurs.

trap at a temperature 7' &~ 100 nK, Agg ~ n

Note that for treating an atom as a boson or fermion, the statistical proper-
ties of an atom as a whole need to be taken into account. An atom can be a boson
or fermion depending on the total number of its fermionic constituents: electrons
and nucleons, therefore, different 1sotopes of the same element may have different
statistical properties, as discussed in Sec. 9 for lithium. Additionally, for trapped
atoms the energy levels are quantized with a level distance given by the trap fre-
quency w. The condensation occurs at temperature much higher than the level
spacing, kg7 > hw, and in this context Bose—Finstein condensation i1s a “high
temperature effect”.

3. History

The history of the quest for the Bose—Einstein condensation has three main
streams connected with studies of superfluidity, advances in cooling, and trapping
of neutral atoms, and efforts to achieve BEC in atomic hydrogen. Let us briefly
recall the milestones of each.

3.1. “Cryogenic route”

e Discovery of superfluidity in *He at 2.17 K by H. Kammerlingh Onnes
awarded with Nobel Prize in 1913.

e Suggestion by F. London that superfluidity is a manifestation of BEC (1938).
e L.D. Landau theory of superfluidity (1941), Nobel 1962.

e Theory of O. Penrose and L. Onsager (1950s) describing a long-range order in
the highly correlated bosonic system. Calculation of the condensate fraction
in superfluid 4He — only 8% of atoms,

e N.N. Bogoliubov’s calculation of a low-energy phonon spectrum (1947).

e Phase transition in ®He at 3 mK discovered by D.M. Lee, D.D. Osheroff, and
R. Richardson in 1972, Nobel 1996.
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It should be pointed out that He is not an ideal gas when it shows superfluidity, the
strong interaction between atoms is the reason for only 8% condensate fraction.

3.2. Cooling and trapping of neutral atoms

e 1968-70 V.S. Letokhov and A. Ashkin presented the first ideas of trapping
atoms in light fields,

e 1975 T.W. Hansch and A.L. Schawlow proposed the method of cooling of
atoms by light,

e around 1980 V.L. Balykin, V.S. Letokhov, and W.D. Phillips performed first

experiments,
e S. Chu and W.D. Phillips demonstrated the first optical and magnetic traps,

e 1986 J. Dalibard, D.E. Pritchard, and S. Chu developed the magneto-optical
trap,

e 1997 W.D. Phillips, S. Chu, and C. Cohen-Tannoudji awarded with Nobel

Prize for development of cooling methods.

3.3. Quest for BEC in atomic hydrogen

The search for BEC in hydrogen was dictated by the desire to study a
medium that remains in a gas phase even at the lowest temperatures.

e 1976 L.H. Nosanov and W.C. Stwalley discovered that polarized hydrogen
did not solidify (ground state of Hy, S = 0, is not accessible by spin-polarized
H atoms),

e 1976 experiments performed by D. Kleppner and T.J. Greytak (MIT) and
by L.F. Silvera and J. Walraven (Amsterdam),

e 1986 H.F. Hess developed evaporation cooling technique.

4. How to cool atoms?

4.1. Cooling of atomic beam

Let us start by showing the possibility of stopping the atomic beam. Consider
a beam of atoms and a counter-propagating laser beam at a frequency of the
atomic resonance (Fig. 2). Absorption of a photon by an atom leads to an atomic
transition to a higher energetic state, but also changes the atomic momentum by
the photon momentum hkr, kr being the wave vector. The subsequent relaxation
to the ground energetic state by spontaneous emission also changes the atomic
momentum. There is asymmetry between these two processes due to the fact that
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laser beam > < atomic beam

Fig. 2. Principle of laser deceleration of collimated atomic beams. Laser photons ar-
rive from a well-defined direction, whereas spontaneously emitted photons are essen-
tially isotropic. The momenta of absorbed laser photons are therefore accumulating to
a nonzero value, while the net momentum change in spontaneous emission is zero. This

gives rise to a light-pressure force in a direction of a laser beam.

all absorbed photons have equal wave vectors, whereas the spontaneously emitted
photons have an arbitrary direction. Therefore a total momentum transfer after
N absorption—emission cycles is

Ap =" hkaps — Y hken = Nhk —0. (3)

As an example let us take sodium atoms with the mass number M = 23
and mean velocity at 400 K v = 600 m/s, illuminated with laser of A = 590 nm.
Each photon causes only a minimal change of atomic velocity so that one needs
some 20 000 photon absorptions to stop an atom. At a quite modest laser beam
intensity of 7 = 6 mW /em? it can be done very fast. An atom can be stopped in
1 ms, on a distance of 0.5 m with a deceleration achieving 10 m/s?.

4.2. Cooling of atomic gas

For the case of gas contained in a cell, one has atoms moving in arbi-
trary directions and thus to cool them along e.g. # axis, one has to use two

®g oL

Fig. 3. Principle of 1D laser cooling of atomic gas. The two counter-propagating laser
beams of equal intensities have their frequencies wz below the atomic resonance fre-
quency wo. Due to Doppler effect, a moving atom experiences a nonzero force that slows

its movement no matter in which direction.
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counter-propagating beams propagating along the OX direction, of the same fre-
quency wy tuned below the frequency of the atomic transition, wp < wg (Fig. 3).
For such laser frequency, Doppler effect tunes atoms to resonance with beams
propagating in the direction opposite to the atom velocity. Therefore, the force
exerted by this beam (stopping force) will be bigger than the force from the
counter-propagating beam (accelerating force) and the net effect would be slowing
down of all atoms, i.e., cooling them.

4 Force

—
\'\ - 7

Fig. 4. The light pressure forces versus atomic velocity in k/I" units ({"is the sponta-

F < -v

neous emission rate) for the case of wy, —wo = I'/2. The forces associated with the two
beams of Fig. 3 cancel for atoms with the zero velocity component. Around v, = 0, the

force has the velocity dependence typical of motion in viscous media.

The same process can be analyzed from the energetic point of view where one
notes that less energy is absorbed than reemitted, which leads to cooling of atoms.
Figure 4 shows the forces acting on atom produced by two counter-propagating
laser beams and their sum versus atomic velocity. For a range of velocities close
to zero, the effective force is proportional to velocity with a negative coefficient. It
has thus a character of a viscous force. Such a configuration has thus been termed
optical molasses.

The described one-dimensional cooling can be easily generalized for a three-
-dimensional case by adding another two pairs of counter-propagating laser beams.
The atoms in the crossing point of all the beams are decelerated (cooled), yet they
are not held by any force and can slowly diffuse from the light beams.

5. How to trap cold atoms?

To hold atoms in a prescribed spatial position (to trap them) one needs a
position-dependent force. The most popular solution is the magneto-optical atomic
trap (MOT), which combines the three-dimensional optical molasses configuration
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of three pairs of anti-parallel laser beams tuned below the atomic resonance fre-
quency with an inhomogeneous magnetic field of quadrupole configuration and
proper circular polarization of the light beams. This produces a light force, which,
apart from the velocity characteristics F'(v) « —v leading to atom cooling, has the
desired spatial characteristics, F'(z) o< —z.

B(x) T

|x=0 X

x=0 x

Fig. 5. Principle of a 1D magneto-optical trap. Atoms with J, = 0 and J. = 0 are
placed in a magnetic field that depends linearly on position (top of the figure). Two
counter-propagating beams, detuned below wg, are circularly polarized in opposite senses
and induce transitions between different magnetic sublevels. Inhomogeneous magnetic
field causes position dependent Zeeman shifts of the sublevels (lower part of the figure)
such that an atom experiences position dependent light pressure. An atom displaced out
of the zero-field position experiences a force which pushes it back to x = 0. Around the

center, the net force is the same as in a harmonic trapping potential, F(z) x —z.

Fig. 6. A 3D realization of the magneto-optical trap. The quadrupole, inhomogeneous
magnetic field is created by two anti-Helmholtz coils where current I flows in opposite

directions.
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It should be noted that the trapping forces are of optical, not magnetic,
origin; the role of magnetic field is merely to control the intensity of optical forces
in dependence on the spatial position. This is done by tuning atomic levels into,
or out of, resonance with laser beams by the Zeeman shift of atomic levels, as
shown in Fig. 5 for the one-dimensional case. The three-dimensional configuration
of a MOT 1is presented in Fig. 6. It shows two anti-Helmholtz coils with opposite
currents producing the quadrupole field and six laser beams with appropriate
polarizations.

Atoms with nonzero angular momenta can be localized also in purely mag-
netic traps (MT), but such traps provide much weaker confinement and are thus
suited only for much colder atoms (unless very high field gradients are used).

6. Temperature limits

Cooling of atoms by interaction with light beams has natural constraints
that dictate the final achievable temperature. The cooling process is based on a
momentum transfer process and dissipation of energy in cyclic processes of ab-
sorption and spontaneous emission. This leads to the decrease in average atomic
velocity, which tends to zero. At the same time, however, the velocity dispersion
is not zero and even increases. This increase in velocity dispersion (equivalent to
heating) is caused by the momentum diffusion during consecutive absorption and
emission acts. The final temperature is achieved when cooling and heating pro-
cesses equalize. For a two-level atom, the limit temperature, Tp, depends only
on the rate of atomic spontaneous emission rate, I" and not on the single photon
momentum kpTp = hI'/2. Tp is the so-called “Doppler limit” temperature and
equals 240 pK for Na atoms and 140 pK for Rb. When multi-level atomic structure
is taken into account, additional cooling mechanisms become important (Sisyphus
cooling), which lower the limit temperature to the sub-Doppler temperatures of
10—100 pK.

On the other hand, the radiation imprisonment, i.e., reabsorption of spon-
taneously emitted photons in the dense atomic cloud leads to the density limit,
Pmax = 1011 =102 at/ecm3.

To reach yet lower temperatures of the order of 100 nK, needed for the
BEC, it is necessary to switch all the light beams off and hold atoms in darkness
in purely magnetic traps. As the magnetic forces are conservative, another cooling
mechanism must be invoked. The required cooling is done by a forced evaporation
of most energetic atoms. They are subjected to radio-frequency field, transferring
atoms to another magnetic state, which is not trapped by the magnetic field con-
figuration (Fig. 7). The remaining atoms should thermalize to lower temperature.
This happens indeed, if the rate of collisions between atoms leading to thermal-
ization is high enough, while the rate of other collisions, which could expel cold
atoms from the trap, i1s so low as to provide enough time for the thermalization
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Fig. 7. Cooling atoms to the lowest temperatures. In the first stage MOT is used to
bring atom gas from a room temperature to about 100 mK. Next, a magnetic trap
is used and atoms are cooled further by a forced evaporation below 100 nK. In the
right figure, the mechanism of evaporation is depicted: radio-frequency field is resonant
with a transition between given levels within the trapping and anti-trapping potential
surfaces of the magnetic trap and can drive atoms of a given energy out of the trap.
By lowering the transition frequency, less energetic atoms in a trap are addressed. After
each evaporation step, the remaining atoms are allowed to thermalize so that they can

reach equilibrium distribution with appropriately lower temperature.

process. The evaporative cooling technique invented for the case of hydrogen has
been fruitfully applied to other elements as well.

7. Achieving Bose—Einstein condensation

The standard way to achieve Bose-Einstein condensation of atomic gases

consists of three steps:

a)

Fig. 8. (a) Idea of imaging of trapped atoms by recording their shadow caused by a
resonant light absorption. (b) First observation of the BEC with ultra-cold ®"Rb atoms
in a magnetic trap [4] (courtesy of the JILA BEC group). Three distributions correspond

to different temperatures reached by the evaporation method.
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1. collection of atoms in a magneto-optical trap and cooling by laser interaction
to sub-Doppler temperatures,

2. transfer of pre-cooled to the magnetic trap,
3. evaporative cooling in the magnetic trap.

The final observation of the condensate state is done again by optical means.
The atom cloud is released by switching off the magnetic field of the trap. After
about 10 ms of free expansion the cloud is illuminated with resonant light and the
shadow of the atomic sample is recorded by a CCD camera. In Fig. 8 we present
the principle of the shadow imaging of the condensate and the image of the first
BEC produced in the E. Cornell and C. Wiemann group in JILA [4].

7.1. The BEC signatures

There are distinct signatures of reaching the BEC state. They are:

e narrow peak in a velocity distribution on a broad background, indicating a
qualitatively new atomic fraction,

e anisotropic shape of this peak, corresponding to the shape of the confining
potential in the atomic trap, while the background has the Gaussian distri-
bution of a thermal cloud,

e abrupt, phase-transition-like, increase in the peak’s amplitude while reducing
temperature.

7.2. BEC n alkalt atoms

Let us summarize the characteristic features of the Bose—FEinstein condensa-
tion experiments with alkali atoms which are: (i) relative simplicity of the experi-
ment (cooling, observation), (i) weak intra-atomic interactions (range ~ 1075 cm,
mean distance between atoms ~ 107%* cm), (iii) well-known atomic structure,
(iv) existence of bosonic and fermionic isotopes, e.g. 5Li and “Li.

The Table presents comparison of parameters for the BEC observation in
the liquid He and in alkali atoms. It clearly indicates that the alkali case is much
closer to the ideal free-particle model.

TABLE
Liquid helium vs. gas BEC.

*Helium Alkali atoms
cooling method evaporation | rf evaporation
critical temperature [K] 0.37 0.17 x 107°
de Broglie wavelength Aag [A] 30 6 x 10*
density [cm™?) 2.2 x 10%2 1014
mean distance [A] 3.5 1000
interaction energy [K] 20 2 x 10710
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More details on the techniques of reaching BEC and on the condensate theory
can be found in several excellent reviews, e.g., [6—7] and in the topical issue of
Nature [8]. We refer also to the Nobel Lectures of the last year laureates [9].

8. Experiments with BEC

8.1. Coherent matter-wave optics

First experiments with BEC concentrated on the coherent properties of the
condensate and continued the development of atom optics, demonstrated already
before the advent of BEC. A property of coherent waves, well known in standard
and atom optics, is their ability to interfere. Figure 9 shows the principle and
results of the experiment [10], which demonstrated this property of a condensate.

Fig. 9. (a) Observation of interference of two condensates. The condensates, released
from a magnetic trap, fall down in a gravitational field (marked by a black arrow),
expand due to finite initial velocities and eventually overlap. When imaged (as illustrated
in Fig. 8a) the interference fringes of the atomic density can be seen. Figure (b) depicts
the condensate pictures before their division and two cases of different initial separation
of the divided parts. Figure (c) shows two interference patterns of the condensate density
corresponding to the two initial separations (reprinted with permission from [10] —
M.R. Andrews et al., “Observation of Interference between Two Bose Condensates”,
Science 275, 637 (1997). Copyright 1997 American Association for the Advancement of

Science).

Figure 9a depicts the free gravitational fall of two condensates which were pro-
duced by halving a single one. The two falling parts expand due to finite initial
velocities and after some distance overlap and interfere. The observation is per-
formed by a resonant imaging beam (block arrow) that allows recording shadow
images. Figure 9b shows the initial single condensate and two separated pairs
for launching them with different initial separations. Figure 9¢ presents two sets
of interference fringes of wave matters corresponding to the two different initial
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c) d)

Fig. 10. Appearance of the atom-laser beams emitted by various lasers. (a) MIT
laser (reprinted from Ref. [11], courtesy of W. Ketterle), (b) Yale laser (reprinted with
permission from Ref. [12] — B.P. Anderson, M.A. Kasevich, “Macroscopic Quantum
Interference from Atomic Tunnel Arrays”, Science 282, 1686 (1998); Copyright 1998
American Association for the Advancement of Science), (c) NIST laser (reprinted with
permission from Ref. [13] — E.W. Hagley et al., “A Well-Collimated Quasi-Continuous
Atom Laser”, Science 283, 1706 (1999); Copyright 1999 American Association for the
Advancement of Science), (d) MPQ laser (reprinted from Ref. [14] with kind permission
of the authors).

separations. The experiment is a direct analogue of the double-slit Young exper-
iment and the matter-wave fringe period depends on the separation in exactly
the same way as the light fringes depend on the slit distance in a classical ver-
sion of the Young interference. Coherence of light is most spectacularly seen in
laser emission. Many important applications are expected from a coherent emis-
sion of matter waves from a condensate, the “atom laser”. Much effort has been
devoted to demonstration of such an effect. Figure 10a presents pulses of matter
waves in the first demonstration of a “pulsed atom laser” [11]. Figures 10b and
¢ present results of improved versions built by the Yale and NIST, Gaithersburg
teams [12, 13]. The laser shown in Fig. 10c allows a quasi-continuous emission,
whereas that shown in Fig. 10d, from the Max-Planck-Inst. for Quantum Optics
in Garching, emits a continuous matter wave [14].

8.2. Nonlinear atom optics

One important effect in nonlinear light-optics is the phenomenon of nonlin-
ear wave mixing. Due to nonlinear response of material media to external light
fields of appropriate intensity, i.e., when external light perturbation becomes com-
parable with intra-atomic interactions, coherent light beams are emitted from the
material sample with their frequencies and directions determined by the energy
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% kin =X kout
2 Oin =X Wout

Fig. 11. Nonlinear wave mixing: (a) of light waves; (b) of the matter waves (BEC’s).
The top figure is a numeric simulation, the lower one shows the experimental results.
Reprinted with permission from Nature (Ref. [15], copyright 1999, Macmillan Publish-
ers Ltd).

and momentum conservation conditions, Y kin = > kouwr and > win = > Wout,
where kin, kout, win, and weys are the wave vectors and frequencies of the incident
and emitted light waves, respectively, Fig. 11a.

In contrast to light, interaction of matter waves is always nonlinear, as gov-
erned by the last term in the Gross—Pitaevski equation describing evolution of the
condensate wave function ¥

2
ih%—f = (—h—+V+Uo|u7|2) v, (4)

where M is the mass of the atom, V' — the external trapping potential and Uy —
the interaction coefficient. The intrinsic nonlinearity of the Gross—Pitaevski equa-
tion allows observation of nonlinear mixing also with matter waves. The upper
part of Fig. 11b depicts the results of numerical simulations of such an experi-
ment [15]. With the help of light pulses, a condensate sample is broken into three
parts moving with momenta p,, p,, and p;. Due to the mixing term in Eq. (4),
a fourth part of condensed atoms appears and moves with momentum p,. This
is the fourth matter wave created by the nonlinear four-wave mixing process.
Experimental observations shown in the lower part of Fig. 11b are in very good
agreement with the simulations.

8.8. Ultra-low density condensed matter physics

Quantum-degenerate gases allow investigation of phenomena characteristic
of condensed matter physics at the range of densities typical of diluted gas samples.
This offers a unique opportunity of studying important processes with negligible
perturbations due to mutual particle interactions. Below, we briefly discuss several
examples of such possibilities.

8.8.1. Superflurdity

In the experiment of Burger et al. [16], the B-E condensate of 3"Rb atoms
was placed in a magnetic trap superimposed with a 1D optical lattice. Optical
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lattice 1s a periodic structure, created by interference of light waves of appropriate
polarizations and directions. 1D lattice is the simplest case of a light wave created
by two counter-propagating beams of equal polarization and frequency. Superpo-
sition of such a lattice with the magnetic trap resulted in a combined potential
which consisted of a parabolic harmonic well and a sinusoidal lattice potential (the
period equal to half of the optical wavelength, i.e. about 400 nm). By applying
additional oscillating homogeneous magnetic field, the magnetic potential under-
went periodic spatial oscillations around a given point, while the optical lattice
is static (see the right frame in Fig. 12). If the temperature of the sample was
above the critical value, the thermal cloud was pinned by the lattice field and did
not follow oscillations of the magnetic well. However, below T¢.i;, the condensed
sample (represented by darker spots in Fig. 12) moved freely and followed the
oscillations of the magnetic potential. This experiment illustrates the ability of a
BEC to tunnel through the potential barriers which is typical of superfluidity.

BEC V(X)
i Thermal $§
0ms T 40ms cloud

Fig. 12. BEC (dark spots) and thermal cloud (lighter clouds) behavior in a combined
potential of a harmonic well (magnetic trap) and a periodic optical lattice (seen in the
right part of the figure). Spatial oscillation of a magnetic potential move the BEC across
the lattice sites thanks to BEC tunnelling through the lattice barriers. The thermal
cloud cannot tunnel and remains pinned by the lattice field [16, 17] (reprinted with kind

permission of the authors from [17]).

Fig. 13. Vortice arrays in BEC created and observed by Ketterle’s team (reprinted
with permission from [18] — J.R. Abo-Shaeer et al., “Observation of Vortex Lattices in
Bose-Einstein Condensates”, Science 292, 476 (2001). Copyright 2001 American Asso-

ciation for the Advancement of Science).
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Another phenomenon characteristic of superfluidity is creation of vortices.
Figure 13 represents vortices created in the BEC sample by appropriate light
fields by Abo-Shaeer et al. [17]. As in a superfluid liquid, the vortices in BEC
are quantized (they carry one unit of angular momentum per vortex) and form
characteristic, regular spatial arrays. Note that similarly to any other manipula-
tion with BEC, creation of vortices can be performed exclusively by appropriate
electromagnetic fields. Also, observation of the vortices is very challenging, given
the size of the condensate (about 0.1 mm).

8.8.2. Josephson oscillations

Josephson oscillations with a BEC sample have been observed in the Fu-
ropean LENS Laboratory in Florence [18]. The experiment demonstrated an os-
cillating atomic current in a one-dimensional array of Josephson junctions. The
junction array was a 1D optical lattice superimposed on a magnetic potential trap-
ping of the 8"Rb BEC. About 200 neighboring lattice sites were filled with about
1000 atoms in each well. Similarly as in another experiment on superfluidity, the
optical lattice and magnetic potential could be moved independently and atomic
tunnelling across the lattice potential barrier could be observed. The current of
atoms tunnelling through the optical lattice barriers exhibited the oscillatory be-
havior typical of the Josephson effect.

8.3.8. Mott insulator

In the experiment of Greiner et al. [19], a reversible transition between the
conducting (superfluid) and insulating modes has been demonstrated with BEC
atoms. A 3D optical lattice has been loaded with the condensate. As long as

v IWWWWA s

Fig. 14. BEC interference pictures demonstrating the transition between superfluid
and insulating modes. A 3D optical lattice is loaded with BEC and then switched off.
Atoms released from lattice sites atoms fall down and interfere. If their phases are cor-
related, the distinct interference pattern is seen, as in (a) and (c), while uncorrelated
atoms yield a structureless distribution (b). The phase correlation depends on the lattice
depth and, consequently on the atomic ability to tunnel between the lattice sites. If the
lattice wells are not too deep, tunnelling is possible and an interference pattern appears,
while for too deep lattice, tunnelling is prohibited and no interference structure is seen
(b) (image courtesy T.W. Héansch).
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the potential depth of the lattice is low, the condensate atoms spread wave-like
over the whole lattice. The atoms can move freely through the lattice potential
barriers which is nothing but the superfluidity, a signature of the conducting phase.
The atoms preserve strong phase correlations among themselves, so when released
from the lattice and falling down due to the gravity, they can interfere and form
distinct interference patterns (Fig. 14a). However, when the lattice potential is high
enough, the tunneling is prohibited and atoms are localized in individual lattice
sites which signifies the insulating phase (Mott insulator). Being localized in lattice
wells, atoms lose their phase correlation with the consequence that no interference
pattern can be seen after release from the lattice (Fig. 14b). The quantum phase
transition from a superfluid to a Mott insulator is reversible, the atoms retrieve
their phase correlation and return to the conducting mode when the potential
barrier is lowered again (Fig. 14c). This kind of experiments allow precision study
of strongly correlated systems and such effects as superconductivity. They may
also find applications in quantum computing and metrology.

9. Cold fermions

Not only bosonic atoms (integer total angular momentum) but also those of
fermionic character (fractional total angular momentum) can be optically cooled
and trapped in magneto-optical traps. However, the quest for quantum degener-
acy 1s much more difficult with fermionic atoms than with bosons. The reason
for that is the Pauli exclusion principle which inhibits intra-fermion interaction
when the de Broglie wavelength becomes comparable with the particle distances.
This feature makes the evaporative cooling of fermionic atoms very inefficient at
low temperatures. Fortunately, this problem can be solved by using the, so-called,
sympathetic cooling which employs mixtures of bosons and fermions, or of differ-
ent fermionic species, e.g., different fermionic isotopes or atoms in different spin
states. Since the Pauli exclusion applies only to identical particles, the use of dif-
ferent atoms makes possible evaporative cooling of a given kind of atoms and their
thermalization with the species of interest. In this way, by using fermionic atoms
in two different spin states, Brian DeMarco and Deborah S. Jin in JILA managed
to cool a gas of fermionic *°K below 300 nK which is 0.5 of the Fermi tempera-
ture [20]. The onset of quantum degeneracy was seen as a barrier to evaporative
cooling. Moreover, Jin and co-workers observed [21] a modification of the classi-
cal thermodynamics: the quantum degenerate fermionic atoms have energy per
degree of freedom significantly higher than the 3kp7T classical equipartition value
(Fig. 15).

A very spectacular evidence of the Pauli blocking and the related Fermi
pressure which prohibits fermionic particles from getting too close 1s provided by
imaging the atomic clouds in temperatures corresponding to the quantum degen-
eracy. Randall Hulet (Rice Univ., Houston) performed such a measurement [22]
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Fig. 15. Experimentally measured energy of fermionic *°K atoms versus their tem-
perature (in units of the Fermi temperature). Below Tx, a distinct deviation from the

classical energy 3kpT is seen [21] (reprinted with kind permission of the authors).

Fig. 16. Density distributions of bosonic and fermionic lithium isotopes, "Li and Li,
respectively, simultaneously trapped in the same magnetic trap. By a proper choice of
laser frequency, one isotopes at a time can be imaged. When the temperature is lowered,
the boson cloud decreases its size by populating lower energy states of the trap, while
the fermionic cloud decreases their size much less (reprinted with permission from [22]
— A.G. Truscott et al., “Observation of Fermi Pressure in a Gas of Trapped Atoms”,
Science 291, 2570 (2001). Copyright 2001 American Association for the Advancement

of Science).

with two isotopes of lithium: fermionic ®Li and bosonic “Li held in the same trap
under identical conditions. By using an imaging light beam of appropriate fre-
quency, one i1sotope at a time has been observed. In this way the images presented
in Fig. 16 have been obtained. This picture clearly demonstrates that the cloud of
cold fermionic atoms cannot reach the size of the boson sample which is a direct
consequence of the Fermi pressure.
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10. Our way towards BEC

In Poland, experimental studies of trapped, cold atoms begun by the con-
struction of the first MOT for rubidium atoms in the Jagiellonian University of
Cracow [23]. After creation of the National Laboratory of Atomic, Molecular and
Optical Physics in Torun, we started to work towards BEC. Our design aims at
condensation of "Rb atoms and consists of three main parts depicted in Fig. 17:

c)

Transfer

MOT2 & MT

Fig. 17. The design of the Polish BEC apparatus, consisting of MOT1, the transfer
part and MOT2 with the MT, and three stages of its operation: (a) MOT1 is loaded
with about 10® " Rb atoms at about 300 K, (b) the cold atoms are pushed down from
MOT1 by a laser beam (vertical arrow) and recaptured in MOT2. (c) the laser beams
are switched off and the atoms are kept in dark by MT and cooled by rf evaporation.

For the sake of clarity the magnetic trap coils are shown only in (c).

(i) The first magneto-optical trap (MOT1); (ii) the transfer stage where atoms
will be transported from MOT1 to the second magneto-optical trap (MOT2) and
to the dark, magnetic trap (MT). The transfer needs to be done in a differentially
pumped vacum apparatus, allowing atomic passage from MOT1 region with about
108 mbar pressure to the MT region of ultra-high vacuum (about 10~!! mbar);
(iii) MOT2 overlapping with MT. Achieving BEC will be accomplished in the
following major steps:
1. loading MOT1 and collecting a possibly large number of pre-cooled atoms
(about 10® atoms at about 300 K). This will be done by using laser beams
(top of Fig. 17a) and quadrupole magnetic field;
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2. transferring pre-cooled atoms to the lower cell by a light pressure of an extra
laser beam (vertical arrow on top of Fig. 17b);

3. recapture of transferred atoms by MOT2 (in a position of MT) and cooling
them below 100 pK (additional laser beams seen at the bottom of Fig. 17b);

4. magnetic trapping (three coils producing strong inhomogeneous field of the
trap are shown only in Fig. 17¢),

5. cooling by forced radio-frequency evaporation and thermalization by colli-
sions below the critical temperature. In this way we expect to reach con-
densate of about 10°-10°% atoms with a critical temperature of the order of

100 nK.

11. Conclusions

In this review we aimed at a very general survey of the ideas, methods, and
results of the ultra-cold atom physics. It unites the contributions from atomic
physics, condensed matter physics and statistical physics. The field is rapidly de-
veloping and new, fascinating results appear every day. We refer the interested
readers to the Bose—Einstein Condensation Homepage at Georgia Southern Uni-
versity, http://amo.phy.gasou.edu/bec.html, which gathers the most up-to-date
news and contains also the BEC Online Bibliography.
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