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We report new results in propagation of two coherently coupled optical
pulses in an inhomogeneously broadened three-level lambda medium.

PACS numbers: 42.50.—p, 42.50.Dv, 42.50.Lc, 42.50.Gy

A wide variety of quantum optical coherence effects, as well as experimental
techniques, are based on double resonance. However, spatial propagation of two
fields that are coupled in a double-resonance interaction has not previously been
investigated. This may be important in light of the increasing use of double reso-
nance in new effects such as lasing without inversion (LWT) and electromagnetically
induced transparency (EIT) [1, 2].

The area theorem for evolution of a coherent pulse in an inhomogeneously
broadened two-level medium derived by McCall and Hahn in 1967 plays a central
role in the nonlinear optical theory of resonant systems [3, 4]. It provides us with a
unique intuitive guide through complex matter-field behavior, relying only on the
knowledge of the initial value of the pulse’s area. The McCall-Hahn area theorem
stands on such solid physical ground that its predictions extend beyond the regime
where its derivation has a rigorous character (see [5]).

It would be attractive to have a theorem of similar generality that can be
applied for two fields interacting with two different resonant transitions. The most
straightforward approach is implemented in [6, 7], where area theorems are derived
for V' and A systems under the restriction of initially identical pulse shapes, in
which case the three-level media exhibit only familiar two-level behavior. Another,
nontraditional, approach would be to step away from the two-level philosophy
by focusing on those elements specific to three-level systems with no analogy in
two-level physics, namely the physics of the well-known “dark state” [8].
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The most attractive features of three-level systems occur in a A configuration
as shown in Fig. la. The long-lived stability of the two lower states gives rise to
numerous effects ranging from coherent, population trapping [9], to counterintuitive
excitation [10], matched pulse propagation [11], adiabatons [12], and many others.
The dark state of lambda systems manifests itself as a coherent superposition
of the ground levels which is decoupled from the incident fields by destructive

interference of the absorption paths.
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Fig. 1. (a) and (b) Sketches of the bare-state and bright/dark-state pictures of a typical

atom in a /A-type medium. (c) Dark area p versus distance for ¢ = 0, see Eq. (4).

Distance is measured in Beer’s lengths, o(.

Evolution equations for a generic lambda configuration can be written using
the standard travelling-wave coordinates ( = z, and 7 =t — z /e, the local time in
a reference frame moving with the velocity of light in the medium
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The notation involving Rabi frequencies £2 and probability amplitudes (g, ¢’, a)

is conventional (see Fig. 1a). We assume that the fields are initially unchirped and

remain so. The angular brackets in (1) refer to the Doppler averages. We do not

require u = g’ for the two coupling constants but we treat only that case here [13].
The usual dressed basis follows from a rotation in g—g’ space:

| cos@/2 sind/2 g 3)
B —sin@/2 cosf/2 J |
where the dressing angle 6 is defined (up to £nw) by cos6/2 = 2,/ andsinf/2 =

2, /025, and the auxiliary “bright field” is defined as £2p = ,/.Qg + .(25,, and the
bright-dark coupling scheme is indicated in Fig. 1b. It is already known [14] that 6
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i1s important for temporal evolution: the magnitude of 0 separates non-adiabatic
from adiabatic regimes.

There are unexpected advantages in treating the dressing angle 8 as the pri-
mary dynamical variable for spatial evolution. Here we use the “dark Rabi frequen-
cy” 2p via the Fleischhauer—Manka relation [15]: 2p = —i(£2,2, — 2, £2,)/ 23,
which supplies the formula: 6(¢,7) = if_Too dr’'2p(¢, 7). Note that the formulae
fix the origin and thereby eliminate the +n7 ambiguity in 6 defined as the rotation
angle in Eq. (3). Any T following the passage of the pulses is effectively an infinite
time, so we define the dark area as 6p(¢) = lim(T > 7,)0(¢,T). We find that it
obeys the nonlinear propagation law

T2 =~ sinlto + ), @
where ¢ is a constant determined by the initial (i.e. before the pulses come)
ground-state coherence of the medium, and « is the normal inverse Beer length
for an inhomogeneously broadened medium.

The analogy of Eq. (4) to the McCall-Hahn area theorem is obvious. De-
pending on initial conditions, there are infinitely many branch solutions for the
dark area #p, as indicated in Fig. lc. An area theorem does not specify pulse
shapes, and we expect shapes to change as the pulses evolve to reach a stable area
with matched forms, as is shown in Fig. 2. Note that the figure shows that, perhaps
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Fig. 2. Evolution plots showing the Rabi frequencies of the physical fields: 2, =
(2dg/h)Ey for the envelope £4({, 7) of the field that excites the ga transition, for exam-
ple. Initially matched pulses with areas 6.27 and 0.57 propagate in a lambda medium
with ¢ = 27/3. Time is in units of inhomogeneous lifetime 7* and the Rabi amplitudes

in units of (7).
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unexpectedly, an initially matched pair of pulses does not remain matched, but
may change dramatically before evolving into a stable final matching, which will
not be at all similar to the initial matching.

We will report elsewhere [13] the details of the methods we have used to
obtain Eq. (4). Intermediate results include a new wave equation for #(¢, 7) and
spatial evolution equations for D and B. The role of inhomogeneous broadening
is emphasized.
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