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 The generalization of the Budd-Vannimenus theorem for jellium model
of metal surface, when the positive background is described by a non-negative
function, is given. Using the displacement electron density profile method and
the generalized Budd-Vannimenus theorem it is shown that work function
expressions given on the basis of Koopmans theorem and by Monnier et al.
are equivalent both for a clean metal and for a metal covered by a metallic
adlayer.
PACS numbers: 71.10.+x, 73.40.Jn

1. Introduction

The original Budd—Vannimenus theorem (BVT) [1] relates the difference in
electrostatic potential at the metal surface and that in the bulk, to the energy per
electron for the uniform electron gas. Thus information about surface properties
is gained through the well-understood properties of bulk matter. The flrst gener-
alization of BVT was given by Bigun [2] for the case of jellium with the positive
background

(semi-infinite metal + metallic adlayer of thickness d), e is the ordinary step
function. The second one, proposed by Monnier and Perdew [3], introduces the
additional external potential simulating the periodicity of the metal interior.

This research was supported in part (K.F.W.) by thc Wrocław University grant
2016/ W/IFD/92.

(979)



980 	 J. Peisert, K.F. Wojciechowski

The BVT often was used as a constraint set on the electrostatic potential
in order to determine variational parameters appearing in trial electron density
profile and then to calculate the surface energy and work function [2, 4]. For the
work function calculation the socalled Koopmans (K) defmition [5] as well as
the "displacement-proflle-change-in-self-consistent-field" (DPΔSCFE D) expres-
sion [6] was used.

In Sec. 2 we present the generalization of the BVT for jellium model, when
the positive background is described by a non-negative function. In Sec. 3 we show,
using D-method, that work function expression given on the ground of Koopmans
theorem, WK, and by Perdew and Sahni [6], WD, are equivalent as well for the
clean metal as for that covered by metallic adlayer, when the BVT is fulfilled.

2. Generalization of the Budd-Vannimenus theorem

Now we shall give the generalization of the BVT when n + (x), the positive
charge density, is such that

where L denotes the thickness of the slab having the area A.
The infinitesimal stretching of n + , conserving the above integral, will be

According to the Hellman—Feynman theorem [7] the change ΔE in the total
energy of the system upon a small change Δn + (r) is given by

Recalling that the derivative dn+ /dx is non-zero only in the vicinity of x = ±L/2,
the integral in Eq. (7) may be transformed to the form λL f  9(x) as Φ(x)dx.
Now let us move the second slab surface as well as the slab center to the minus

*Atomic units are used (ħ = |e| = m e = 1).
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infinity. Following the proof of Monnier and Perdew [3] (Appendix F therein) we
get the BVT

where εT = lo2F + εxc is the sum of the average kinetic, exchange and correla-
tion energies of uniform electron gas per particle. C and X denote the variational
parameters of Monnier and Perdew potential V(x) = CΘ(-x + X) and n(x) de-
scribes the electron density profile in the direction perpendicular to the considered
system. For n+ being the k-step function

where i = 1, 2, ... , k - 1, we have (with δ(x) being the Dirac function)

and the formula (9) takes the form

Expression (12) for k = 2 exhibits the Bigun result [2]. 
The above generalization of BVT can be used to many surface problems for

which positive background may be simulated by the function given by Eq. (10),
thus for instance, to layer on layer adsorption or to surface segregation. In the
next section we use it to examine the relation between K and D expressions for
work function.

3. Work function expression

The first commonly used definition of work function is reminiscent of Koop-
mans theorem [5] for removal energy of an electron from an atom, and has the
following form [81:

where Δ4 is the surface dipole barrier [8, 9], and kF — the Fermi momentum. The
electrostatic potential 0(x), connected with the total-charge-density profile nT(x)
by the Poisson equation has the form

where x-axis is perpendicular to the surface of metal-adsorbate system and wr(x) _
n(x) - n+ (x). Here n(x) denotes the electron density profile of metal (with bulk
density n) and n+ (x) is arbitrary non-negative function such that the conditions
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n+ (—oo) = n and n+ (oo) = 0 are satisfied. The D expression for work function is

[6]:

where δυ(x) is the planar average of the discrete lattice potential (for the jellium
model δv(x) = 0).

Let us evaluate now Φes, the electrostatic contribution to work function (see
[10], Appendix D) employing the change-in-self-consistent-field (ΔSCF) method
for the positive jellium density n + (x) assumed above. Denoting nΣ(x) the electron
density profile of the metal with Σ electrons per unit area added on its surface
and with -Σ charge in the infinity, one can do the replacement

(σ denotes the surface energy) our task is to evaluate the derivative of the elec-
trostatic part σes of the surface energy with respect to the surface charge density
E, or to find the linear coefficient of the power expansion of σ es with respect to
the parameter Δ = Σ/n. Using the definition
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Employing the generalized Budd and Vannimenus theorem given by Eq. (9), for
variational potential V(x) = 0,

we arrive at the equality WK = WD for any n+ (x). For clean metal model (n + (x)
nΘ(-x) )) this equivalence has been shown earlier by Mahan and Schaich [11]. It is
to be noted that the Bigun result (with n + given by Eq. (1))

is valid also when na/n > 1.
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