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1. Introduction

The quaternions were first described by Hamilton
in 1843. In 1987, the Serret-Frenet formulae for qua-
ternionic curves in E3 and E4 were given by Bharathi
and Nagaraj [1], and then, Serret-Frenet formulas for a
dual quaternionic curve D3 and D4 was defined by Si-
vridağ et al. [2]. Inclined curves and characterization of
quaternionic Lorentz manifolds were given by Karadağ [3]
and split quaternions were identified with semi-Euclidean
space E4

2 , while the vector part of split quaternions was
identified with Minkowski 3-space by Inoguchi [4]. Af-
ter that, Çöken and Tuna in their study [5] have given
inclined curves, harmonic curvatures and some characte-
rizations for a quaternionic curve in the semi-Euclidean
spaces E4

2 . In 2009, formulas for dual-split quaternionic
curves were obtained by Çöken et al. [6].

In this study with the help of Frenet formulas, we give
harmonic curvatures and inclined curves for the dual split
quaternionic curves. Also, the characterizations are given
in terms of harmonic curvatures of curves.

2. Preliminaries

A dual number has the form a + ξa∗, where a and a∗
are real numbers and ξ = (0, 1) is the dual unit, having
property ξ2 = 0. The set of all dual numbers forms a
commutative ring over the real number field denoted by
Veldkamp [7].
D3 dual vector space (ID-module) can be written as

D3 = {(A1, A2, A3) : A1, A2, A3 ∈ D. Similarly, D4 dual
vector space can be written as D4 = {(A1, A2, A3, A4) :
A1, A2, A3, A4 ∈ D. The same definitions of inner-
product, norm and cross-product hold for D4. The Lo-
rentzian inner-product of two dual vectors A = a + ξa∗

and B = b+ ξb∗, ab ∈ R3
1 is given as < A,B >=< a, b >

+ξ(< a∗, b > + < a, b∗ >) with the signature (−,+,+)
in R3

1. The ID-module D3 with the Lorentzian inner-
product is named as semi-dual space D3

1. On the other
hand, a semi-Euclidean inner-product of two dual vectors
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in D4, A = a + ξa∗ and B = b + ξb∗; a, b ∈ R4
2, can be

defined as
< A,B >=< a, b > +ξ(< a∗, b > + < a, b∗ >),

with the signature (−,−,+,+) in R4
2. The dual space D4

with semi-Euclidean inner product is named as semi-dual
space D4

2 or dual-split quaternion [8, 9].
A split quaternion q is an expression of the form

q = ae1 + be2 + ce3 + d where a, b, c and d are real
numbers, and e1, e2, e3 are split quaternionic units
which satisfy the non-commutative multiplication ru-
les Qν = {q|q = ae1 + be2 + ce3 + d ; a, b, c, d ∈ R,
e1, e2, e3 ∈ R3

ν(ν=1,2), hν (ei, ei) = −ε (ei), 1 ≤ i ≤ 3},
where ei×ei = −ε (ei), 1 ≤ i ≤ 3, ei×ej = ε (ei) ε (ej) ek
in R3

1, ei × ej = −ε (ei) ε (ej) ek in R4
2 [5].

A dual split quaternion Q is written as Q = Ae1 +
Be2 + Ce3 + D. As a consequence of this definition,
a dual split quaternion Q can also be written as Q =
q + ξq∗, ξ2 = 0, where q = ae1 + be2 + ce3 + d and
q∗ = a∗e1 + b∗e2 + c∗e3 + d∗ are, respectively, real and
dual split quaternion components. Let p and p∗ be two
semi-real quaternions.

We define the semi-dual quaternion by P = p + ξp∗,
and denote the set of semi-dual quaternions by QDν with
an index ν = 1, 2 such, that QDν = {(P |P = Ae1+Be2+
Ce3 + D; A,B,C,D ∈ ID, e1, e2, e3 ∈ R3

1, Hν (ei, ei) =
−ε (ei), 1 ≤ i ≤ 3)}.

The multiplication of two dual quaternions P and Q
is defined by: P ×Q = p× q + ξ(p×q∗ + p∗ × q), where
P = p + ξp∗ and Q = q + ξq∗ and × shows the quater-
nion multiplication. It is clear that P × Q = SPSQ +
SPVQ+SQVP− < VP , VQ > +VPΛVQ, where <,> is the
inner-product and Λ is the cross-product on ID3

1. The
conjugate of P = SP + VP is denoted by αP = SP − VP .

For every P,Q ∈ QDν , we define the symmetric dual-
valued bilinear form Hν : QDν ×QDν → ID by

H (P,Q) =
1

2
[ε (P ) ε (αQ) (P × αQ) +

ε (Q) ε (αP ) (Q× αP )], for D3
1,

H(P,Q) = −1

2
[ε(P )ε(αQ)(P × αQ)

+ε(Q)ε(αP )(Q× αP )], for D4
2.
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The following results may be obtained:
1) For ∀ P,Q of QDν , we have Hν (P,Q) = hν (p, q) +

ξ [hν (p, q∗) + hν (p∗, q)], where h is the symmetric real-
valued bilinear form.

2) If P = Ae1 + Be2 + Ce3 + D, then Hν(P, P ) =
−A2 −B2 + C2 +D2.

3) ∀ P,Q ∈ QDν scalar part and vector part of P are
SP = 1

2 (P + αP ), VP = 1
2 (P − αP ).

The concept of a dual spatial quaternion will be used
throughout our work. P is called a semi-dual spatial
quaternion whenever P + αP = 0. It is a semi-dual
temporal quaternion whenever P − αP = 0. Let P and
Q be two semi-dual spatial quaternions. If Hν(P,Q) = 0,
then P and Q are Hν-ortogonal [6].
Theorem 2.1. β : I → QD3

1
regular semi-dual qua-

ternionic curve is given by arc-length parameter s. Let
{T (s), N1(s), N2(s)} be the Frenet trihedron in the point
β(s) of the curve β, where K(s) and R(s) are curvatures.
Then Frenet apparatus are [6]

T ′(s) = εN1
K(s)N1(s),

N ′1(s) = εT [εT εN1RN2(s)−KT (s)],

N ′2(s) = −εN2
RN1(s).

Theorem 2.2. β̄ : I → QD4
2
regular semi-dual qua-

ternionic curve is given by arc-length parameter s. Let
{T̄ (s), N̄1(s), N̄2(s), N̄3(s)} be the Frenet trihedron in
the point β̄(s) of the curve β̄. Then Frenet apparatus
are [6],

T̄ ′(s) = εN̄1
K̄ N̄1, (1)

N̄ ′1 (s) = εN1
KN̄2 − εT εN̄1

K̄T̄ , (2)

N̄ ′2(s) = −εTKN̄1 + εN1
[
(
R− εT εT̄ εN̄1

K̄
)
]N̄3, (3)

N̄ ′3(s) = −εN2[R− εT εT̄ εN̄1
K̄]N̄2. (4)

Definition 2.3. β : I → QID3
1
regular semi-dual qua-

ternionic curve is given by arc-length parameter s, such
that u is a constant and unit vector in QID3

1
for ∀s ∈ I,

let H(β′(s), u) be a constant defined by

H(β′(s), u) =

{
cosΦ, β is spacelike curve
− coshΦ, β is timelike curve

}
=

const, ϕ 6= π

2
. (5)

Then curve β is called semi-dual spatial quaternionic in-
clined curve in QD3

1

Definition 2.4. Let γ : I → R3
1 be a semi-real quater-

nionic curve. Such that γ(s) = γ1(s)e1+γ2(s)e2+γ3(s)e3,
β : I → QD3

1
,

β(s) = γ1(s)e1 + γ2(s)e2 + γ3(s)e3

+ξ(γ∗1 (s)e1 + γ∗2 (s)e2 + γ∗3 (s)e3)

or β(s) = A(s)e1 + B(s)e2 + C(s)e3; A(s), B(s), C(s) ∈
ID, obtained from γ, such that {T (s), N1(s), N2(s)} be
the Frenet trihedron in the point β(s) of the curve β
and let u = u0 + ξu∗0 be a unit and constant vec-
tor. Then, β′ (s) = T0 (s) + ξT ∗0 (s) = T (s)αβ′(s) =

−T0(s) − ξT ∗0 (s), u = u0 + ξu∗0, αu = −u0 − ξu∗0 (u is
semi-dual spatial quaternion). Thus, u, T (s) ∈ QID3

1

H(u, T ) = h(u0, T0) + ξ[h(u0, T
∗
0 ) + h(u∗0T0)].

Definition 2.5. β : I → QD3
1
regular semi-dual qua-

ternionic curve is given by arclength parameter s. Let
{T (s), N1(s), N2(s)} be the Frenet trihedron in the point
β(s) of the curve β and let u = u0 + ξu∗0 be a unit and
constant vector, such that angle Φ = ϕ+ ξϕ∗ is between
β′(s) and u. H : I → ID,

H(N2(s), u) = H̄(s)H(T (s), u) ={
H̄ cosΦ, β is a spacelike curve
−H̄ coshΦ, β is a timelike curve

}
, ϕ 6= π

2
(6)

can be defined. Then function H is semi-dual harmonic
curvature in the point β(s) of curve β with respect to u.
Definition 2.6. β̄ : I → QD4

2
regular semi-dual qua-

ternionic curve is given by arclength parameter s, such
that u = u0+ξu∗0 is a unit and constant semi-dual spatial
quaternion for every s ∈ I,

H
(
β̄′ (s) , u

)
=

{
cosΦ, β̄ is a spacelike curve
− coshΦ, β̄ is a timelike curve

}
=

const, ϕ 6= π

2
. (7)

Then β̄ is called semi-dual quaternionic inclined curve in
semi-quaternion sets QD4

2
.

Definition 2.7. β̄ : I → QD4
2
regular semi-dual qua-

ternionic curve is given by arc-length parameter s. Let
{T̄ (s), N̄1(s), N̄2(s), N̄3(s)} be the Frenet apparatus and
let u be a unit and constant, such that angle Φ = ϕ+ξϕ∗

is between T (s) and u. Let H̄i : I → ID be functions
defined by

H
(
N̄i+1, u

)
=

{
H̄i cosΦ, β̄ is a spacelike curve
−H̄i coshΦ, β̄ is a timelike curve

}
,

ϕ 6= π

2
. (8)

Then function H̄i is called ith Harmonic curvature in
the point β̄(s) of the β̄ semi-dual quaternion curve with
respect to u. Then, H̄0 is equal to zero.

3. Harmonic curvatures
and characterizations in D3

1

Theorem 3.1. Let β : I → QD3
1
be a semi-dual

spatial quaternionic inclined curve given by arc-length
parameter s. Curvatures at the point β(s) of β are
K(s) = k(s) + ξk∗(s), R(s) = r(s) + ξr∗(s) and in that
case H̄ is a harmonic curvature, it is

H̄(s) =
K(s)

εT εN1
R(s)

(9)

(see [3] for dual quaternionic curve).
Proof. Let Φ = ϕ + ξϕ∗ be an angle between the

u constant semi-dual vector and the tangent vectors of
β : I → QID3

1
semi-dual spatial quaternionic inclined

line, such that {T (s), N1(s), N2(s)} is Frenet trihedron
in the point β(s). We obtain, that H (T (s) , u) = const.
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Here, by differentiating with respect to s, we get
H(T ′(s), u) = 0. From Serret-Frenet formulas of β,
we obtain that H(N1(s), u) = 0. Here, by differenti-
ating with respect to s, we obtain H(N ′1(s), u) = 0.
Here, by using the Frenet formulas, H(N2(s), u) =
εTK

ε2T εN1
R
H(T (s), u) is obtained. Thus, if Eq. (6) is used,

Eq. (9) is found. Thus, harmonic curvature of semi-dual
spatial quaternionic curve is obtained from the curvatu-
res of a curve.

Theorem 3.2. Let β : I → QD3
1
be a semi-dual spatial

quaternionic curve, given by arc-length parameter s. Let
H̄(s) be harmonic curvature and {T (s), N1(s), N2(s)} be
the Frenet trihedron at the point β(s). β is semi-dual
quaternionic inclined curve if and only if H̄2(s) is con-
stant (see [3] for dual spatial quaternionic curve).

Proof. (⇒) There is a unit semi-dual spatial qua-
ternion u. Therefore, H (β′ (s) , u) = 0 is constant for
β semi-dual spatial quaternionic inclined curve with re-
spect to arc-length parameter s. If {T (s), N1(s), N2(s)}
is basis of semi-dual spatial quaternion in the point β(s),
semi dual quaternion u,

u = εTH (T (s) , u)T (s)

+

2∑
i=1

εNiH (Ni (s) , u)Ni (s) (10)

is obtained. Hence, we have ‖u‖2 = |H(u, u)| =
|εu(u × αu)|. With Eq. (6), by taking ‖T (s)‖ = |εT |,
‖N1(s)‖ = |εN1

|, ‖N2(s)‖ = |εN2
| and ‖u‖ = |εu| = 1

into consideration,

H̄2(s) =
±1−H2(T (s), u)εT
H2(T (s), u)εN2

= const

is obtained.

(⇐) In contrast, suppose that H̄2(s) = a is constant
for β semi-dual spatial quaternionic curve. Therefore,
there is Φ angle such that ±1−H2(T (s),u)εT

H2(T (s),u)εN2
= a. Thus, we

define u semi-dual spatial quaternion, where
u = εTH(T (s), u)T (s)

+εN2H̄(s)H(T (s), u)N2(s). (11)

By differentiating Eq. (11) with respect to s
du

ds
= εTH(T (s), u)K(s)N1(s)

−ε2
N2H(T (s), u)

K(s)

εT εN1
R(s)

N1(s).

Here, using the Frenet formulas and by taking Eq. (9)
into the consideration du

ds = 0 is obtained. Thus u is a
constant semi-dual spatial quaternion. Now, if it is given
that u semi-dual spatial quaternion is a unit,
‖u‖2 = |H (u, u)| = |εu (u× αu)| =∣∣εuH2 (T (s) , u)

[
εT + H̄2 (s) εN2

]∣∣ = |εu (±1)| = 1

is found. On the other hand,H(T (s), u) = const is found.
Therefore, β is a semi-dual spatial quaternionic inclined
curve.

4. Harmonic curvatures
and characterizations in D4

2

Theorem 4.1. Let β : I → QD3
1
be semi-dual spatial

quaternionic inclined curve. Such that β(s) = A(s)e1 +
B(s)e2+C(s)e3; A(s), B(s), C(s) ∈ ID. β̄(s) = A(s)e1+
B(s)e2 + C(s)e3 +D(s), D(s) ∈ ID is obtained from β.
Thus, semi-dual quaternionic curves β̄ and β are semi-
dual quaternionic inclined curves of the same axis (see [4]
for dual quaternionic curves).
Proof. Let β̄ : I → QD4

2
be a semi-dual qua-

ternionic curve given by arc-length parameter s. Let
u be an unit and a constant semi-dual spatial quater-
nion, such that {T̄ (s), N̄1(s), N̄2(s), N̄3(s)} is Frenet ap-
paratus in the point β̄(s) of curve β̄. As we know,
H(β̄′(s), u) = H(T̄ (s), u), T̄ (s) = D(s) + T (s, D(s)) =
d0 + ξd∗0 ∈ ID, T (s) = T0(s) + T ∗0 (s), u = u0 + ξu∗0 and
αT (s) = D(s)− T (s). We obtained that

H(T̄ (s), u) =

−εT̄ εαuh(u0, T0) + ξ[h(u0, T
∗
0 ) + h(u∗0, T0)]},

where h is a real semi-quaternionic inner product.
Theorem 4.2. Let β̄ : I → QD4

2
be a semi-dual qua-

ternionic inclined curve given by arc-length parameter
s. ki(s) are curvatures in the point β̄(s), δ̄i (s) = 1

k̄i(s)
,

1 ≤ i ≤ 3, are curvature radii and H̄j(s), j = 1, 2 are
harmonic curvatures,

H̄1 (s) =
1st curvature
2nd curvature

,

and H̄2 (s) = H̄ ′1 (s) δ̄3 (s) , (12)
(see [3] for dual quaternionic curves).
Proof. Let β̄ : I → QD4

2
be a regular semi-dual qua-

ternionic curve. u is an unit and a constant semi-dual
spatial quaternion. If {T̄ (s), N̄1(s), N̄2(s), N̄3(s)} is Fre-
net apparatus in the point β̄(s), H

(
T̄ (s) , u

)
= const is

written. By differentiating this equation with respect to
s, we obtain that H(T̄ ′, u) = 0. Here, using Eq. (1),
H(N̄1, u) = 0 is found. By differentiating H(N̄1, u) = 0
with respect to s, H(N̄ ′1(s), u) = 0 is obtained. Here,
using Eq. (2),

H(N̄2, u) =
εN̄1

εT K̄

εN1
K

H(T̄ (s) , u) (13)

is found. Here, by taking Eqs. (7) and (8) into considera-
tion, H̄1 =

εT̄ εN̄1
K̄

εN1
K = 1st curvature

2nd curvature is obtained. Here, K̄
is the first curvature of β̄ curve in QD4

2
, K(s) is both the

first curvature of β curve in QD3
1
and the second curva-

ture of β̄ curve in QD4
2
. On the other hand, if derivative

of Eq. (13) with respect to s is taken,
H(N̄ ′2, u) = H̄ ′1H(T̄ (s), u) (14)

is found. Here, using Eq. (3)
−εTKH(N̄1, u) + εN1 [R− εT εT̄ εN̄1

K̄]H(N̄3, u) =

−H̄ ′1 coshΦ (15)
is found. If Eq. (8) is written in place of Eq. (15),
H̄2(s) = H̄ ′1(s)δ̄3(s) is found. Thus, harmonic curva-
tures for semi-dual spatial quaternionic inclined curves
are obtained from curvatures.
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Theorem 4.3. Let β̄ : I → QD4
2
be semi dual qua-

ternionic inclined curve, given by arc-length parameter
s. If {T̄ (s), N̄1(s), N̄2(s), N̄3(s)} is Frenet apparatus and
harmonic curvature Hi(s), i = 1, 2, (see [3] for dual
quaternionic curve), β̄ is a inclined line if and only if
2∑
i=1

εN̄i+1
H2(N̄i+1(s), u) is a constant.

Proof (⇒): Suppose that β̄ : I → QD4
2
is an incli-

ned line of semi-dual quaternionic curve. Thus, there
is u unit and constant semi-dual quaternion such that
H(β̄′(s), u) = const, ∀s ∈ I for β̄ curve. Suppose that
there is a basis of β̄ curve in the point β̄(s). We define
the semi-dual quaternion u as

u = εT̄H(T̄ (s), u)T̄ (s)

+

3∑
i=1

εN̄iH
2(N̄i(s), u)N̄i(s). (16)

We have ‖u‖2 = |H (u, u)| = |εu (u× αu)| = 1. Because
of ‖T̄ (s)‖ = |εT̄ |, ‖N̄1(s)‖ = |εN̄1

|, ‖N̄2(s)‖ = |εN̄2
|,

‖N̄3(s)‖ = |εN̄3
|, ‖u‖ = |εu| = 1,

2∑
i=1

εN̄i+1
H2(N̄i+1(s), u) =

±1− εT̄H2(T̄ (s), u) = const

is obtained.

(⇐) Suppose that
2∑
i=1

εN̄i+1
H2(N̄i+1(s), u) = a is

a constant for β̄ : I → QID4
2

semi-dual quaternion
curve. Therefore, there is a dual angle Φ, such that
±1 − εT̄H

2(T̄ (s), u) = a. Thus, we defined that u is
semi-dual spatial quaternion, such that

u = εT̄H(T̄ (s), u)T̄ (s)

+

3∑
i=2

εN̄iH̄i−1(s)H(T̄ (s), u)N̄i(s). (17)

Here, we demonstrate that u is a constant. Thus, if de-
rivative of Eq. (17) with respect to s is taken, and here,
using Eq. (8) for i = 1, 2, H(N̄2(s), u) = H̄1H(T̄ (s), u)
and H(N̄3(s), u) = H̄2H(T̄ (s), u) is obtained. If de-
rivative of the last equation with respect to s is ta-
ken, H(N̄ ′3(s), u) = H̄ ′2H(T̄ (s), u) is found. Here, using
Eq. (4),
−εN2(R− εT εT̄ εN̄1

K̄)H(N̄2, u) = H̄ ′2H(T̄ (s), u)

is obtained. Here, by considering the H(N̄2(s), u) =
H̄1H(T̄ (s), u)

H̄ ′2(s) = −εN2
(R− εT εT̄ εN̄1

K̄)H̄1(s) (18)
is obtained. By taking the derivative of Eq. (17) and
using the last equations, du

ds = 0 is found. Thus, u is a
constant. On the other hand, we demonstrate that u is
an unit. That is, ‖u‖2 = |H (u, u)| = |εu (u× αu)| = 1 is
obtained. Thus, H(T̄ (s), u) = const is found. Therefore,
β̄ is an inclined curve.

Corollary 4.4. Derivative equations of harmonic cur-
vatures obtained for semi-dual quaternionic curves by the
aid of Eq. (18) and the Theorem (4.2.),[

H̄ ′1
H̄ ′2

]
=

[
0 εN1

F

−εN̄2
F 0

][
H̄1

H̄2

]
is found in the matrix form, where F = (R−εT εT̄ εN̄1

K̄).

5. Conclusions

In this paper, we have studied the differential geometry
of smooth curves in the semi-dual spaces D3

1 and D4
2. We

gave new characterizations for dual quaternionic curves
in the semi-dual spaces D3

1 and D4
2 using their harmonic

curvature functions. These functions are
(i) β : I → QD3

1
, which is a semi-dual quaternionic

inclined curve if and only if H̄2(s) is constant. Here H̄
is harmonic curvature function of the curve β.

(ii) β̄ is an inclined line if and only if
2∑
i=1

εN̄i+1
H2(N̄i+1(s), u) is a constant. Here H̄1

and H̄2 are harmonic curvature functions of the curve β̄.
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