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Simplified Parquet Equations for the Anderson Impurity
Model: Comparison with Numerically Exact Solutions
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We use an analytic solver for the single-impurity Anderson model based on simplified parquet equations to
describe the Kondo asymptotics. This scheme uses a two-particle self-consistency to control the strong-coupling
Kondo critical behavior of this model at half filling. The equations can be written in the real-frequency representa-
tion, which gives us direct access to spectral functions unlike numerical schemes in the Matsubara formalism. We
compare our results to those obtained by second-order perturbation theory, numerical renormalization group, and
continuous-time quantum Monte Carlo in order to assess the reliability of this approximation.
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1. Introduction

The properties of weakly and intermediately correlated
electrons are captured sufficiently well by the (perturba-
tive) Fermi liquid theory. However, with increasing in-
teraction strength the system can become unstable due
to quantum fluctuations. One then needs to employ non-
perturbative approaches to describe the properties close
to the emerging quantum critical point of the system of
strongly correlated electrons.

One option is to use numerical techniques such as exact
diagonalization, quantum Monte-Carlo or the numerical
renormalization group (NRG). These methods are usu-
ally both time and computational resources consuming
and each of them has its specific limitations. Other op-
tion is to use analytic methods, usually based on the per-
turbation expansion in the interaction strength. Unfortu-
nately, one needs to sum up an infinite series of diagrams
in order to access the strong-coupling regime. Further-
more, since the quantum criticality is marked by diver-
gences in the two-particle and response functions, such as
susceptibilities, the calculation scheme must incorporate
two-particle self-consistency to maintain control over the
divergent behavior.

One example of an analytic method was recently de-
scribed in Ref. [1] and represents an extension of the
scheme developed earlier in Refs. [2, 3]. It employs sim-
plified parquet equations (SPE) method with only static
renormalization of one-particle propagators to determine
self-consistently the two-particle vertices. In order to
maintain the consistency between the divergent behav-
ior of the two-particle vertices and the symmetry break-
ing in one-particle functions, this scheme defines two
self-energies. The so-called thermodynamic self-energy is
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used to renormalize propagators in the two-particle equa-
tions and serves only as an auxiliary function breaking
the symmetry at the critical point. The spectral self-
energy on the other hand determines the shape of the
spectral function and the physical properties of the sys-
tem.

The purpose of this contribution is to assess the reli-
ability of this approximation by comparing the spectral
properties of a simple model with results obtained by
a set of other established, both numerical and analytic
methods.

2. The model and the method

We test the construction of the solver on the one-band
single-impurity Anderson model (SIAM) which describes
a magnetic impurity embedded in a metallic host. The
quantum critical point lies at infinite interaction strength
and is generated by magnetic spin-flip fluctuations lead-
ing eventually to the breaking of the spin symmetry [4].
The model Hamiltonian is
H =

∑
kσ

εkc
†
kσckσ + Ud†↑d↑d

†
↓d↓

−
∑
σ

µσd
†
σdσ +

∑
kσ

(V c†kσdσ + V ∗d†σckσ), (1)

where c†kσ creates a conduction electron with dispersion
εk and spin σ =↑ or ↓, d†σ creates an electron with spin
σ at the impurity site with energy Ed, µσ = −Ed + σh
is the spin-dependent chemical potential containing the
external magnetic field h, U is the local Coulomb in-
teraction and V is the hybridization strength between
the conduction band and the impurity site. Assuming
constant density of states ρ0 = (2D)−1 of the conduc-
tion band with a half-bandwidth D, the non-interacting
local impurity Green function takes a Lorentzian form
G

(0)
σ (ω) = (ω + µσ + i∆)−1 with the width ∆ = πρ0V

2,
where ω is the (real) frequency.
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We calculated the spectral functions of SIAM in a wide
region of interaction strengths using our implementation
of SPE. The approach described in Ref. [1] reduces a set
of coupled integral equations to a self-consistent set of al-
gebraic ones for the regular part Λ and the singular part
K of the two-particle vertex. At zero temperature and
zero magnetic field they read

Λ =
U

1 + ψ
, K(ω) = − Λ2φ(ω)

1 + Λφ(ω)
, (2)

where

ψ = −
∫ 0

−∞

dx

π
Im(G(x)G(−x)K∗(−x)),

φ(ω) = −
∫ 0

−∞

dx

π
(G(x+ ω) +G∗(x− ω))ImG(x),(3)

and G(ω) is the impurity Green function renormalized by
the thermodynamic self-energy ΣT . We dropped the spin
label σ since we are interested in the spin-symmetric solu-
tion only. The frequency variable ω is assumed to have an
infinitesimal positive imaginary part ω → ω + i0+. The
thermodynamic self-energy is calculated from the vertex
via a Ward identity linearized with respect to the exter-
nal magnetic field h, which is then set to be zero. This
identity reflects the conservation of charge. The spec-
tral self-energy ΣS is determined from the dynamical,
Schwinger–Dyson equation. The two self-energies are

ΣT = −Λ
∫ 0

−∞

dx

π
ImG(x),

ΣS(ω) = −U
∫ 0

−∞

dx

π

ImG(x)

1 + Λφ(x− ω)

−ΛG(x+ ω)Im
φ(x)

1 + Λφ(x)
. (4)

The interacting Green function GS(ω) is then obtained
from the spectral self-energy using the Dyson equation.
All these equations are in a form of frequency convo-
lutions and can be calculated very efficiently using the
Fourier transform, so the converged solution can be ob-
tained within seconds on a standard PC.

To compare the results of SPE with other methods, we
also calculated the spectral functions using NRG, quan-
tum Monte Carlo and second-order perturbation theory
(PT). NRG data at zero temperature were obtained us-
ing the NRG LJUBLJANA code [5]. We used the “self-
energy trick” to reduce NRG over-broadening effect [6].
The continuous-time hybridization-expansion (CT-HYB)
quantum Monte Carlo calculations were performed us-
ing the solver included in TRIQS package [7]. Since
this method works only at finite temperatures, we set
kBT = 0.0125∆. The CT-HYB spectral functions were
obtained by analytic continuation of the imaginary-time
Green function using the maximum entropy method [8].
Finally, we calculated the spectral functions using the
simple second-order PT, to see the breakdown of the
finite-series summation technique for strong interactions.

3. Results

From now on we resort to the particle–hole symmetric
case, where the thermodynamic self-energy is compen-
sated by the chemical potential µ = −Ed + U/2 and we
use ∆ as the energy unit in all calculations.

Fig. 1. Spectral function of the one-band Anderson
impurity model at zero temperature for interaction
strength U = 6∆ at half-filling calculated by different
methods: simplified parquet equations (black), second-
order PT (blue dashed) and NRG (red). Inset shows
the comparison between NRG (red) at T = 0 and CT-
HYB quantum Monte Carlo at kBT = 0.0125∆ (black
dashed).

In Fig. 1 we plotted the spectral function ρ(ω) =
−Im GS(ω) for U = 6∆ calculated by various methods.
The inset shows the comparison between NRG and CT-
HYB. The CT-HYB result shows a bit more developed
Hubbard satellites, but the important shape of the Kondo
resonance peak at the Fermi energy is the same in both
methods. The slight reduction of the height of the central
peak in the CT-HYB solution is due to the finite temper-
ature effects. The spectral functions obtained with these
two numerical methods are in good agreement, we hence-
forth use the NRG as the benchmark, since it is suitable
for the zero-temperature case.

Since the interaction is not very strong, the simple
second-order PT approximates the NRG result well. This
ability of the non-self-consistent second-order PT to pro-
vide quantitatively reliable results in a wide range of pa-
rameters is discussed in detail in Ref. [9].

The spectral function obtained by SPE shows the
canonical three-peak structure with a Kondo resonance
at the Fermi energy, although the width of the central
peak is significantly smaller and the Hubbard satellites
are more developed than in the NRG spectral function.

The critical region of SIAM is characterized by asymp-
totic vanishing of the Kondo scale. In Fig. 2 we plot-
ted the Kondo scale defined as the half-width at half-
maximum of the Kondo resonance peak obtained by dif-
ferent schemes. Both NRG and SPE results show expo-
nential behavior of the Kondo scale for large interaction
strengths U/∆. Furthermore, both these methods give
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Fig. 2. Comparison of the Kondo scale at zero temper-
ature defined as the half-width at half-maximum of the
central peak in spectral function as a function of inter-
action strength U/∆. Blue dashed: second-order PT,
black: SPE, red: NRG. Note the logarithmic scale on
the vertical axis.

correct scaling factor within the numerical accuracy when
compared to the exact, Bethe-ansatz solution which gives
the universal scaling factor exp(−πU/(8∆)).

On the other hand, SPE underestimates the width of
the resonance, as already shown in Fig. 1, while NRG
gives the correct width, which we tested by comparison
with CT-HYB and the exact solution. The source of this
discrepancy is not yet known and will be a subject of
future research.

The second-order PT, despite giving reasonable quan-
titative results up to U/∆ ≈ 10, fails to provide the cor-
rect scaling, and is not able to describe the Kondo be-
havior. This shows the well-known fact that one needs
to sum up an infinite subset of terms in the perturbation
expansion series to obtain correct behavior close to the
quantum critical point.

4. Conclusions

We presented a comparison of the method based
on simplified parquet equations developed in Ref. [1]
with other well-known methods to assess its reliability

in the description of quantum criticality in systems of
strongly correlated electrons. We used the simple one-
band single-impurity Anderson model as an example and
presented spectral functions and the behavior of the
Kondo scale in the strong-coupling limit. The impu-
rity solver based on the simplified parquet equations pro-
vides us with a qualitatively correct structure of the spec-
tral function, interpolates well between weak and strong-
coupling regimes and it is free of any unphysical sym-
metry breaking leading to spurious magnetic solutions.
Furthermore, we obtain a correct exponential scaling of
the width of the quasiparticle peak with increasing inter-
action strength. Despite the fact that this method fails to
produce quantitatively correct values of the Kondo scale,
it represents a consistent and affordable description of
quantum criticality in correlated electron systems.
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