驼乳降血糖研究进展
Research Progress of Camel Milk in Lowering Blood Sugar
DOI: 10.12677/BP.2024.141002, PDF, HTML, XML, 下载: 82  浏览: 159 
作者: 贾 婷*, 刘羿羿*, 李 璐, 孟凡华, 曹俊伟#:内蒙古农业大学生命科学学院,内蒙古 呼和浩特;内蒙古自治区生物制造重点实验室,内蒙古 呼和浩特;内蒙古地方畜牧生物技术创新团队,内蒙古 呼和浩特;钱晓影:兴安盟农牧业研究所,内蒙古 兴安盟
关键词: 骆驼乳理化性质降血糖活性物质 Camel Milk Physicochemical Properties Blood Glucose Reduction Active Substances
摘要: 骆驼乳在动物实验与临床试验取得显著降血糖效果,是由于其含有多种降血糖活性成分,胰岛素、胰岛素样生长因子、乳清蛋白以及其他微量元素。本文主要介绍了骆驼乳在辅助治疗糖尿病方面的研究进展,旨在为骆驼乳在帮助调节血糖方面的应用提供科学依据。
Abstract: Camel milk has shown significant blood glucose-lowering effects in animal experiments and clinical trials, which is attributed to its various active components such as insulin, insulin-like growth factor, whey protein, and other trace elements. This article primarily introduces the research progress of camel milk in adjunctive therapy for diabetes, aiming to provide scientific evidence for the application of camel milk in helping regulate blood glucose levels.
文章引用:贾婷, 刘羿羿, 钱晓影, 李璐, 孟凡华, 曹俊伟. 驼乳降血糖研究进展[J]. 生物过程, 2024, 14(1): 7-14. https://doi.org/10.12677/BP.2024.141002

1. 引言

在全球范围内,糖尿病已经成为了一种持续增长的常见疾病,对患者的健康和生活质量产生了严重影响。传统的治疗方法包括药物治疗和饮食控制。近年来,人们对于天然食品在糖尿病管理中的潜在作用越来越感兴趣。驼乳作为一种传统的食品和药物,引起了科学界的关注。驼乳具有丰富的营养成分,并被认为具有多种保健功效。其中一个备受关注的方面是其可能对血糖水平的调节作用。然而,关于驼乳降血糖作用的研究仍处于初级阶段,尚需进一步深入探索。

驼乳作为一种天然的营养食品,在中东和北非地区被广泛使用,并认为具有很多医学价值 [1] [2] 。近年来,研究人员开始关注其对糖尿病的潜在作用,初步研究表明,驼乳可能具有降血糖的效果,能够改善糖尿病患者的血糖控制。然而,对其有效性、安全性和作用机制的深入研究仍然缺乏。因此,本文将从最新的研究进展出发,对驼乳降血糖的现状及未来发展进行探讨,以期为糖尿病患者的治疗提供新思路和新方向。

2. 驼乳的理化成分

2.1. 物理性质

骆驼奶通常呈现不透明的白色,具有淡淡的甜味和辛辣的味道,其味道可能是由于其用饲料和引用水所引起的 [3] 。骆驼的生理阶段、饲养条件、季节、生理变化、遗传组成和健康状况都会影响其泌乳性能和乳品质 [4] [5] 。骆驼奶的pH值范围在6.4~6.4之间,初乳pH较低 [6] ,酸度在0.14%~0.15%之间 [7] 。在高温下,骆驼奶的热稳定性远低于牛奶,由于驼奶中缺乏β-LG和k-CN,驼奶在自然的pH下不能灭菌 [8] 。骆驼奶的平均比重为1.029,根据品种不同,在1.026~1.035之间变化 [6] ,表面张力范围为58.35~58.37 dynes/cm [7]

2.2. 化学成分

骆驼奶是一种水基溶剂,含有脂肪和蛋白质以及乳糖、矿物质和维生素的复杂混合物。然而,不同研究之间的成分含量略有不同,但各研究差异较小,见表1。它在成分和功能方面与其他反刍动物的乳汁不同;因为它含有高浓度的免疫球蛋白,维生素和矿物质,但蛋白质和胆固醇含量低 [8] [9] 。

3. 驼乳辅助治疗糖尿病研究现状

3.1. 糖尿病定义和糖尿病分类

糖尿病是一种慢性代谢性疾病,其特征是碳水化合物、蛋白质和脂肪代谢的多种异常 [15] 。正常情况下,胰岛素是一种由胰腺分泌的激素,能够帮助葡萄糖进入体内细胞,从而使血糖维持在正常范围内。然而,糖尿病患者无法产生足够的胰岛素,或者对胰岛素的作用不敏感,导致血糖无法得到有效控制。

Table 1. Composition of camel milk

表1. 骆驼奶成分

糖尿病分类:1) I型糖尿病,由于自身免疫性B细胞破坏,通常导致绝对胰岛素缺乏,包括成年期的潜伏性自身免疫性糖尿病2) II型糖尿病,由于在胰岛素抵抗的背景下经常进行性丧失足够的B细胞胰岛素分泌3) 由于其他原因引起的特定类型的糖尿病,单基因糖尿病综合征,(如新生儿糖尿病和年轻人的成熟期糖尿病)、胰腺外分泌疾病(如囊性纤维化和胰腺炎)、以及药物或化学品诱导的糖尿病(如糖皮质激素的使用,HIV/AIDS的治疗,或器官移植后) 4) 妊娠糖尿病,妊娠中期或晚期诊断的糖尿病,妊娠前未明确为显性糖尿病。

3.2. 驼乳治疗糖尿病的动物实验

Humaira Hussain等人 [16] 通过对小鼠进行试验,骆驼奶显著地降低了糖尿病小鼠的血糖和HbA1c浓度,与接受格列本脲(Glibenclamide)的糖尿病动物没有差异,同时证实了骆驼奶恢复与肝细胞生物标志物相关的ALT和AST酶活性的效力,骆驼奶的这些保护作用可能源于其抗氧化活性和对有毒物质可能的螯合作用 [17] 。Hamad等人 [18] 研究了骆驼奶与牛奶对糖尿病Sprague-Dawley大鼠的抗糖尿病作用,证明骆驼奶比牛奶和水牛奶(11%)具有更高的降血糖作用(49%)。也有研究结果显示 [19] [20] [21] [22] ,骆驼乳清具有显著的药理作用,可显著增加糖尿病小鼠体质量,降低血糖水平,并有效保护肝脏免受损害,同时提高肝脏的抗氧化功能。同样,驼乳清蛋白在防治2型糖尿病方面具有潜在的药理作用 [23] [24] ,可能与其改善胰腺β细胞功能、抗氧化应激反应相关。Anshu Raj等人 [25] 比较了骆驼奶和胰岛素单独或联合使用治疗链脲佐菌素(Streptozotocin STZ)诱导的糖尿病大鼠的功效,经过一段时间的治疗之后,明显改善了肝脏、肾脏和胰腺的形态特征,且胰岛素组和骆驼奶组单独对这些参数表现出更有利的影响。

3.3. 驼乳治疗糖尿病的临床实验

Sboui等人 [26] [27] 对患有的糖尿病病人接受驼奶治疗,使用骆驼奶治疗后,在空腹血糖、餐后血糖、甘油三酯、胆固醇水平和HbA1c方面有明显改善水平。一些研究也通过骆驼奶对胰腺β细胞的免疫调节功能、抗炎作用和高浓度的抗氧化剂来解释骆驼奶对血糖参数的这种功效。最近的研究表明 [28] ,骆驼奶在改善长期血糖控制方面安全有效,可显着减少I型糖尿病患者的胰岛素剂量。此外,对印度一个经常食用驼奶的骆驼饲养地区进行的一项全面的比较研究表明 [29] [30] ,与其他地区相比,糖尿病的发病风险较低,所以有很多研究提倡驼奶的抗糖尿病潜力。Mayada A. Ali等人 [31] 研究得出从驼乳中提取的外泌体对正常胰腺细胞具有抗凋亡增殖作用。糖尿病患者食用新鲜CM导致TC、TG和LDL水平显着降低 [32] ,同时HDL水平显着升高。与T2D患者相比,I型糖尿病患者在降低TC、LDL和TG水平以及增加HDL水平方面产生了更有益的效果。总之,对于糖尿病患者,尤其是I型糖尿病患者,长期食用CM可能是与处方药物一起改善血脂状况的有效辅助疗法。

4. 驼乳中降低血糖的活性成分

驼乳被广泛认为是一种具有多种保健功效的天然营养品,其中的活性成分可能对血糖稳定起到一定作用。驼乳中含有一系列的营养物质和生物活性成分,这些成分可能对降低血糖具有一定作用。尽管相关研究仍在进行,但我们可以初步了解一些已知的成分以及它们对降低血糖的潜在作用。

4.1. 胰岛素

糖尿病的治疗方案包括多种抗糖尿病药物,如α-葡萄糖苷酶抑制剂、格列奈德、磺脲类和双胍类药物。这些药物可以有助于改善血糖调节,但它们也可能会导致一些不良反应。胰岛β细胞分泌的胰岛素常被用来治疗糖尿病,由于研发、生产、分销和监管等方面的原因,导致市面上的胰岛素价格昂贵,加重患者负担。研究人员倾向于探索动植物营养药物作为糖尿病治疗的替代选择,因为他们担心胰岛素使用可能导致患者对药物产生依赖,并希望寻找更安全和可持续的治疗方法。研究表明,驼乳中含有高浓度的胰岛素,平均含量为63.76 ± 7.77 μU/mL [33] 。骆驼乳胰岛素(CMI)的尺寸较小,使得其相对容易成为血液循环的一部分 [5] ,并且骆驼胰岛素被封装在纳米颗粒(脂质囊泡)中,使其能够通过胃并进入循环 [34] ,驼奶易于被人体消化并迅速代谢 [35] ,并有助于减少乳糖不耐受个体发生的胃肠道疾病,所以这使得驼奶成为治疗糖尿病更有效的治疗方法。

4.2. 胰岛素样生长因子-1

驼乳中的胰岛素样因子,也被称为胰岛素样生长因子(insulin-like growth factor,简称IGF),是一种由胰岛素基因家族编码的多肽激素。2021年HUDA MOHAMED等人 [36] 测定128头阿联酋单峰驼奶中胰岛素样生长因子I (IGF 1)浓度为1.4~736.1 ng/mL,也首次报道胰岛素样生长因子2 (IGF 2)浓度范围在13.7~82.6 ng/mL。并且在骆驼奶中观察到与人胰岛素、胰岛素异构体、受体和其他类似的肽,有力地证明骆驼奶中含有与人胰岛素相似的蛋白质/肽 [37] 。

4.3. 乳清蛋白

乳清蛋白主要的生物活性成分包括β-乳球蛋白(β-LG)、α-乳白蛋白(α-LA)、免疫球蛋白、乳铁蛋白以及乳过氧化物酶 [38] ,占骆驼乳总蛋白20%~25% [39] ,牛奶中乳清蛋白含量高于驼乳,乳清蛋白会影响凝结物硬度,所以骆驼奶形成的凝胶比牛奶更为柔软 [40] 。

胰岛素在体内调节糖脂代谢主要通过PI3K/Akt信号通路。在窦志华等人的研究中表明 [41] [42] ,骆驼乳清蛋白(Camel whey protein CWP)增加了T2DM大鼠中IRS2、PI3K、Akt、GSK3和GS的表达水平,表明PI3K/Akt通路被激活。激活的PI3K将通过IRS-2的反馈提高胰岛素敏感性。激活的GSK3、GS、FoxO1和G6Pase能够调节葡萄糖代谢,因此推测CWP可以增加血清胰岛素浓度并激活肝脏中的胰岛素PI3K/Akt信号通路,从而促进糖原合成并抑制糖异生,从而降低血糖水平。

目前对糖尿病的研究表明,肝损伤是糖尿病的严重并发症。CWP治疗显著降低了II型糖尿病(T2DM)大鼠血清中炎症细胞因子(例如IL-6和TNF-α)的水平 [43] 。同时,CWP通过增强SOD和GPx的活性有助于清除氧自由基,减少氧化应激,从而减少炎症因子的释放,改善肝细胞损伤。因此,CWP治疗可以通过减少肝脏氧化应激和炎症来保护T2DM大鼠的肝脏。事实上,骆驼奶蛋白可以通过以下方式恢复和增加胰岛素分泌:1) 刺激葡萄糖介导的胰岛素分泌,2) 抑制胰高血糖素的分泌及其在肝脏中的功能,和/或3) 抑制间接控制胰岛素分泌的关键酶,如二肽基肽酶IV (DPP-IV) (图1) [43] 。

Figure 1. Speculative representation of the different cellular and molecular targets of camel milk and its mechanisms of action leading to anti-diabetic effects

图1. 骆驼奶不同细胞和分子靶标的推测性表征及其抗糖尿病作用机制

4.4. 微量元素

邵伍军等人对驼奶中的微量元素进行测定,驼奶中矿物成分的主要特征是其相对丰富的K、Na和Cl [44] 。β细胞Na+K+2Cl协同转运蛋白1(Nkcc1)的缺失会损害体内胰岛素分泌 [45] ,从而影响早期摄食行为受损引发的长期代谢后果,阴离子通道还通过在β细胞中启动生电Cl通量来促进胰岛素分泌。此外,骆驼奶还含有高含量的锌,这是生物体所需的微量元素 [46] 。有超过300种酶需要锌来维持其活性并与许多体内酶有关系 [47] 。

5. 总结与展望

骆驼乳降血糖的研究正在不断取得进展,实验室研究和临床观察表明,骆驼乳可能对糖尿病有潜在益处。它被认为可以降低血糖水平、改善胰岛素敏感性,并提高胰岛素抵抗。此外,骆驼乳降血糖的具体机制尚不明确,虽然已经确定了骆驼乳对糖尿病的产生积极影响,但还需要深入研究其活性成分以及其对血糖调节的具体作用机制。这将有助于揭示骆驼乳降血糖途径,并为相关药物的开发提供理论基础。此外,对于不同类型和阶段的糖尿病患者的反应情况也需要进一步研究,以确定其在临床实践中的适用范围和具体效果。

未来的研究还可以探索个体化治疗策略,根据不同患者的特点和需求,将驼乳作为糖尿病综合治疗的一部分,并为传统药物相结合,以实现更好的糖尿病管理效果。驼乳作为降血糖的潜在资源将继续受到科学界的关注,并有望成为糖尿病预防和治疗的新领域。随着对驼乳成分、作用机制和临床应用的深入研究,相信其在降血糖领域的潜力将得到更充分的挖掘和发展。然而,也需要注意到其中可能存在的风险和局限性,例如过敏反应、剂量控制等问题需要引起足够的重视和研究。

因此,未来的研究将需要在基础研究和临床实践上取得更多突破,以全面评估驼乳作为降血糖食品或药物的潜在效果和安全性,为其进一步开发和临床应用提供更加可靠的科学依据。

致 谢

非常感谢曹俊伟教授对本文章的指导。非常感谢生物过程杂志能录用此文章,祝生物过程杂志社越办越好,成为读者心目中的最佳读物。

NOTES

*并列一作。

#通讯作者。

参考文献

[1] Benmeziane-Derradji, F. (2021) Evaluation of Camel Milk: Gross Composition—A Scientific Overview. Tropical Ani-mal Health and Production, 53, Article No. 308.
https://doi.org/10.1007/s11250-021-02689-0
[2] Muthukumaran, M.S., Mudgil, P., Ayoub, M.A., et al. (2023) A Comprehensive Review on Health Benefits, Nutritional Composition and Processed Products of Camel Milk. Food Reviews International, 39, 3080-3116.
https://doi.org/10.1080/87559129.2021.2008953
[3] Abbas, S. (2013) Physico-Chemical Analysis and Composi-tion of Camel Milk. International Researcher, 2, 83-98.
[4] Ho, T.M., Zou, Z. and Bansal, N. (2022) Camel Milk: A Review of Its Nutritional Value, Heat Stability, and Potential Food Products. Food Research International, 153, Article ID: 110870.
https://doi.org/10.1016/j.foodres.2021.110870
[5] Yadav, A.K., Kumar, R., Priyadarshini, L., et al. (2015) Composition and Medicinal Properties of Camel Milk: A Review. Asian Journal of Dairy and Food Research, 34, 83-91.
https://doi.org/10.5958/0976-0563.2015.00018.4
[6] El-Hatmi, O., et al. (2023) Relation between Color and Chemical Composition of Dromedary Camel Colostrum. Animals, 13, Article 442.
https://doi.org/10.3390/ani13030442
[7] Yoganandi, J., Mehta, B.M., Wadhwani, K.N., et al. (2014) Comparison of Physico-Chemical Properties of Camel Milk with Cow Milk and Buffalo Milk. Journal of Camel Practice and Re-search, 21, 253-258.
https://doi.org/10.5958/2277-8934.2014.00045.9
[8] Mal, G., Sena, D.S. and Sahani, M.S. (2007) Changes in Chemical and Macro-Minerals Content of Dromedary Milk during Lactation. Journal of Camel Practice and Research, 14, 195-197.
[9] Fahaid, A.H. (2009) Camel’s Milk Protects Against Aluminum Chloride-Induced Toxicity in the Liv-er and Kidney of White Albino Rats. American Journal of Biochemistry & Biotechnology, 5, 3101-3104.
https://doi.org/10.3844/ajbbsp.2009.98.108
[10] Alaoui Ismaili, M., Saidi, B., Zahar, M., et al. (2016) Composition and Microbial Quality of Raw Camel Milk Produced in Morocco. Journal of the Saudi Society of Agricultural Sciences, 18, 17-21.
[11] Gwida, M. (2018) Evaluation of Physicochemical Properties and Microbiological Quality of Camel Milk from Egypt. Journal of Dairy, Veterinary & Animal Research, 7, 92-97.
https://doi.org/10.15406/jdvar.2018.07.00197
[12] Alwan, O.A. and Zwaik, H.B. (2023) Milk Composition of Libyan Maghrebi Camels (Camels Dromedaries) Reared under Farm and Desert Conditions. International Conference on Chemical, Environment & Biological Sciences (CEBS-2014), Kuala Lumpur, 17-18 September 2014, 92-94.
[13] Konuspayeva, G., Faye, B. and Loiseau, G. (2009) The Composition of Came L Milk: A Meta-Analys Is of the Literature Data. Journal of Food Composition and Analysis, 22, 95-101.
https://doi.org/10.1016/j.jfca.2008.09.008
[14] Soliman, G.Z.A. (2005) Comparison of Chemical and Mineral Content of Milk from Human, Cow, Buffalo, Camel and Goat in Egypt. The Egyptian Journal of Hospital Medicine, 21, 116-130.
https://doi.org/10.21608/ejhm.2005.18054
[15] Dennedy, M.C., Rizza, R.A. and Dinneen, S.F. (2016) Classification and Diagnosis of Diabetes Mellitus. In: Jameson, J.L., Eds., Endocrinology: Adult and Pediatric (Seventh Edition), Saunders, Philadelphia, 662-671.
https://doi.org/10.1016/B978-0-323-18907-1.00038-X
[16] Hussain, H., Wattoo, F.H., Wattoo, M.H.S., et al. (2023) Camel Milk as an Alternative Treatment Regimen for Diabetes Therapy. Food Science & Nutrition, 9, 1347-1356.
[17] Abdel-Salam, A.M., El-Mergawi, R.A., Al-Humaid, A.I., et al. (2010) Chemical Composition and An-tioxidant Activity of Dates and Dates-Camel-Milk Mixtures as a Protective Meal against Lipid Peroxidation in Rats. American Journal of Food Technology, 5, 22-30.
https://doi.org/10.3923/ajft.2010.22.30
[18] Hamad, E.M., Ab-del-Rahim, E.A. and Romeih, E.A. (2011) Beneficial Effect of Camel Milk on Liver and Kidneys Function in Diabetic Sprague-Dawley Rats. International Journal of Dairy Science, 6, 190-197.
https://doi.org/10.3923/ijds.2011.190.197
[19] 刘宸, 冯鑫欢, 豆智华, 安淑静, 刘梦娇, 侯志梅, 杨洁. 新疆双峰驼乳对链脲佐菌素诱导的糖尿病小鼠肝脏的保护作用[J]. 食品科学, 2020, 41(9): 74-80.
[20] Izadi, A., Khedmat, L. and Mojtahedi, S.Y. (2019) Nutritional and Therapeutic Perspectives of Camel Milk and Its Protein Hydrol-ysates: A Review on Versatile Biofunctional Properties. Journal of Functional Foods, 60, Article ID: 103441.
https://doi.org/10.1016/j.jff.2019.103441
[21] Khan, M.Z., et al. (2021) Research Development on Anti-Microbia1 and Antioxidant Properties of Came1 Mi1k and Its Ro1e as an Anti-Cancer and Anti-Hepatitis Agent. Antioxidants, 10, Article 788.
[22] Redha, A.A., Valizadenia, H., Siddiqui, S., et al. (2022) A State-of-Art Review on Camel Milk Pro-teins as an Emerging Source of Bioactive Peptides with Diverse Nutraceutical Properties. Food Chemistry, 373, Article ID: 131444.
https://doi.org/10.1016/j.foodchem.2021.131444
[23] 侯志梅, 丁雪梅, 李风, 等. 驼乳清蛋白影响糖尿病大鼠胰腺β细胞功能的效果以及作用机制初探[J]. 临床和实验医学杂志, 2020, 19(1): 39-43.
[24] 王瑞, 周克夫, 汪建红. 骆驼奶对1型糖尿病小鼠的辅助治疗效果[J]. 厦门大学学报(自然科学版), 2015, 54(3): 331-334.
[25] Moneim, A.A., Helmy, H., Abdel-Reheim, E.S. and Addaleel, W.W. (2016) Camel Milk Ameliorates Hyperglycemia-Mediated Hyperlipidemia and Oxidative Stress on Streptozotocin-Induced Diabetic Rats. International Journal of Diabetes Research, 5, 63-69.
[26] Sboui, A., Atig, C., Khabir, A., et al. (2022) Camel Milk Used as an Ad-juvant Therapy to Treat Type 2 Diabetic Patients: Effects on Blood Glucose, HbA1c, Cholesterol, and TG Levels. Jour-nal of Chemistry, 2022, Article ID: 5860162.
https://doi.org/10.1155/2022/5860162
[27] Zheng, Y., Wu, F., Zhang, M., et al. (2021) Hypoglycemic Effect of Camel Milk Powder in Type 2 Diabetic Patients: A Randomized, Double-Blind, Placebo-Controlled Trial. Food Science & Nutrition, 9, 4461-4472.
https://doi.org/10.1002/fsn3.2420
[28] Shori Bakr, A. (2015) Camel Milk as a Potential Therapy for Controlling Diabetes and Its Complications: A Review of in Vivo Studies. Journal of Food & Drug Analysis, 23, 609-618.
https://doi.org/10.1016/j.jfda.2015.02.007
[29] Agrawal, R.P., Jain, S., Shah, S., et al. (2011) Effect of Camel Milk on Glycemic Control and Insulin Requirement in Patients with Type 1 Diabetes: 2-Years Randomized Controlled Trial. European Journal of Clinical Nutrition, 65, 1048-1052.
https://doi.org/10.1038/ejcn.2011.98
[30] Mehra, N.K., et al. (2014) The Raikas—A Unique Combination of High Prevalence of Type 1 Diabetes Susceptibility Genes and Near Zero Incidence of the Disease. Human Immunology, 75, 1252-1258.
https://doi.org/10.1016/j.humimm.2014.09.009
[31] El-Kattawy, A., Algezawy, O., Alfaifi, M., et al. (2021) Ther-apeutic Potential of Camel Milk Exosomes against HepaRG Cells with Potent Apoptotic, Anti-Inflammatory, and An-ti-Angiogenesis Effects for Colostrum Exosomes. Biomedicine & Pharmacotherapy, 143, Article ID: 112220.
https://doi.org/10.1016/j.biopha.2021.112220
[32] Khalid, N., Abdelrahim, D.N., Hanach, N., et al. (2023) Effect of Camel Milk on Lipid Profile among Patients with Diabetes: A Systematic Review, Meta-Analysis, and Me-ta-Regression of Randomized Controlled Trials. BMC Complementary Medicine and Therapies, 23, Article No. 438.
https://doi.org/10.1186/s12906-023-04257-5
[33] 张世瑶, 李莉, 陆东林, 徐敏, 刘朋龙. 新疆双峰驼乳中胰岛素含量测定[J]. 中国奶牛, 2015(17): 48-50.
[34] Malik, A., Al-Senaidy, A., Skrzypczak-Jankun, E. and Jankun, J. (2023) A Study of the Anti-Diabetic Agents of Camel Milk. International Journal of Molecular Medicine, 30, 585-92.
[35] Ehlayel, M.S., Hazeima, K.A., Al-Mesaifri, F., et al. (2011) Camel Milk: An Alternative for Cow’s Milk Allergy in Children. Allergy & Asthma Proceedings, 32, 255-258.
https://doi.org/10.2500/aap.2011.32.3429
[36] Mohamed, H., Ranasinghe, M., Amir, N., et al. (2022) A Study on Variability of Bioactive Proteins in Camel (Camelus Dromedarius) Milk: Insulin, Insulin-Like Growth Factors, Lactofer-rin, Immunoglobulin G, Peptidoglycan Recognition Protein-1, Lysozyme and Lactoperoxidase. International Journal of Dairy Technology, 75, 289-297.
https://doi.org/10.1111/1471-0307.12836
[37] Agrawal, R.P., Agrawal, R., Ranga, M.N., et al. (2022) Insulin Like Protein from Camel Milk and Similarity with Human Insulin. The Indian Journal of Animal Sciences, 92, 101-104.
https://doi.org/10.56093/ijans.v92i1.120933
[38] Inglingstad, R.A., Devold, T.G., Eriksen, E.K., et al. (2010) Comparison of the Digestion of Caseins and Whey Proteins in Equine, Bovine, Caprine and Human Milks by Human Gastrointestinal Enzymes. Dairy Science & Technology, 90, 549-563.
https://doi.org/10.1051/dst/2010018
[39] Park, Y.W. and Haenlein, G.F.W. (2013) Milk and Dairy Products in Human Nutrition: Production, Composition and Health. Wiley-Blackwell, Berlin.
https://doi.org/10.1002/9781118534168
[40] Kumar, D., et al. (2016) Camel Milk: Alternative Milk for Human Consumption and Its Health Benefits. Nutrition & Food Science, 46, 217-227.
[41] Dou, Z., Liu, C., Feng, X., et al. (2023) Camel Whey Protein (CWP) Ameliorates Liver Injury in Type 2 Diabetes Mellitus Rats and Insulin Resistance (IR) in HepG2 Cells via Activation of the PI3K/Akt Signaling Pathway. Food & Function, 13, 225-269.
https://doi.org/10.1039/D1FO01174J
[42] Huang, X., Liu, G., Guo, J., et al. (2018) The PI3K/AKT Pathway in Obesity and Type 2 Diabetes. International Journal of Biological Sciences, 14, 1483-1496.
https://doi.org/10.7150/ijbs.27173
[43] Ayoub, M.A., Palakkott, A.R., Ashraf, A., et al. (2018) The Molecular Ba-sis of the Anti-Diabetic Properties of Camel Milk. Diabetes Research and Clinical Practice, 146, 305-312.
[44] 邵伍军. 甘肃双峰驼乳中主要生物活性物质分析[D]: [硕士学位论文]. 兰州: 甘肃农业大学, 2007.
[45] Sadek, K., Beltagy, D., Saleh, E., et al. (2016) Camel Milk and Bee Honey Regulate Profibrotic Cytokine Gene Transcripts in Liver Cirrhosis Induced by Carbon Tetrachloride. Canadian Journal of Physiology and Pharmacology, 94, 1141-1150.
https://doi.org/10.1139/cjpp-2015-0596
[46] Guo, H., Wang, L., Wang, C., et al. (2021) Identification of an Apis Cerana Zinc Finger Protein 41 Gene and Its Involvement in the Oxidative Stress Response. Archives of Insect Biochem-istry and Physiology, 108, e21830.
https://doi.org/10.1002/arch.21830
[47] Ercal, N. and Penugonda, S. (2004) Toxic Metals and Oxidative Stress Part II: Role of Antioxidants in Metal-Induced Oxidative Damage. Current Topics in Toxicology, 1, 53-71.