炎症指标与膀胱癌预后的相关因素分析
Correlation between Inflammation Index and Prognosis of Bladder Cancer
DOI: 10.12677/ACM.2023.13122760, PDF, HTML, XML, 下载: 133  浏览: 166 
作者: 张志勇, 陈国俊*:青海大学附属医院,泌尿外科,青海 西宁
关键词: 炎症肿瘤发生膀胱癌Inflammation Tumorigenesis Bladder Cancer
摘要: 一些研究调查了炎症在促进肿瘤发生和癌症进展中的作用。肿瘤以及周围的基质和炎症细胞参与了相互作用,构成了炎性肿瘤微环境。肿瘤相关的炎症组织具有高度可塑性,能够不断改变其表型和功能特征。越来越多的证据表明,慢性炎症在膀胱癌的发展中起着关键作用。在这里,我们回顾了与膀胱癌相关炎症的起源,重点关注导致肿瘤发生、生长、进展和转移的机制。我们还讨论了肿瘤相关炎症组织如何成为临床上肿瘤进展风险的诊断标志物以及未来抗癌治疗的目标。
Abstract: Several studies have investigated the role of inflammation in promoting tumorigenesis and cancer progression. The tumor and the surrounding stroma and inflammatory cells participate in the in-teraction, constituting the inflammatory tumor microenvironment. Tumor-associated inflammatory tissue is highly plastic and capable of constantly changing its phenotypic and functional character-istics. There is growing evidence that chronic inflammation plays a key role in the development of bladder cancer. Here, we review the origins of inflammation associated with bladder cancer, focus-ing on the mechanisms that lead to tumorigenesis, growth, progression, and metastasis. We also discuss how tumor-associated inflammatory tissue can be a diagnostic marker for clinically signifi-cant risk of tumor progression and a target for future anticancer therapies.
文章引用:张志勇, 陈国俊. 炎症指标与膀胱癌预后的相关因素分析[J]. 临床医学进展, 2023, 13(12): 19604-19611. https://doi.org/10.12677/ACM.2023.13122760

1. 背景

虽然炎症是针对生物、化学和物理制剂的自限性宿主防御手段,但它也被认为是癌症发展的标志。炎症,尤其是持续性炎症,会刺激细胞增殖和局部宿主反应,导致细胞损伤和包括癌症在内的各种疾病的发展。Wigner P [1] 等、de Andrade CT [2] 等的相关研究中发现炎症可能在膀胱癌的发生和发展中起重要作用。此外,富含细胞因子、趋化因子、转录因子和免疫细胞的肿瘤微环境(TME)可以增强肿瘤生长和免疫逃逸。炎症是肿瘤发生发展的重要参与者,据估计,肿瘤发生与15%~20%癌症的慢性感染和炎症相关 [3] 。幽门螺杆菌、乙型或丙型肝炎以及自身免疫性疾病等病因与胃癌和结直肠癌、肝细胞癌和黏膜相关淋巴组织淋巴瘤有关 [4] 。

在过去几年中,大量研究表明,炎症分子和通路可促进各种癌症类型的发展,包括泌尿生殖系统肿瘤 [3] 。在膀胱癌(BC)中,慢性炎症(例如泌尿生殖系统血吸虫病)与其他公认的病因(如吸烟和芳香胺职业暴露)一起被接受为危险因素 [5] [6] [7] 。在本综述中,我们分析了炎症分子如何触发细胞转化、肿瘤细胞增殖和泌尿生殖系统肿瘤转移。我们还描述了肿瘤相关炎症细胞触发肿瘤免疫逃逸的能力,对具有高危因素的患者进行干预,对于提高膀胱癌患者的整体预后十分重要。

2. 炎症是膀胱癌的危险因素

炎症反应似乎是肿瘤发生和发展的基础,但其在致癌中的作用仍需进一步阐明。病原体、饮食、机械和化学创伤等多种因素能够引发炎症过程。已经提出了两种不同的模型来描述炎症与癌症的关系:(1) 由DNA损伤、染色体不稳定性和表观遗传变化诱导的内在途径;(2) 与自身免疫性疾病或感染引起的炎症信号相关的外源性通路。这两种途径的特征都是转录因子的激活,如核因子κB (NF-κB)和信号转导和转录激活因子(STAT)-3,它们驱动炎症级联反应 [8] 。总体而言,泌尿生殖系统炎症最常见的病因是感染性和非感染性病因。

2.1. 传染性病原体

2.1.1. 寄生虫

血吸虫病是BC的公认危险因素,BC是男性最常见的癌症类型。鳞状细胞癌占所有血吸虫病相关BC的60%~90%,腺癌占5%~15%,其余为尿路上皮癌 [9] 。埃及血吸虫卵刺激炎症反应,通常产生决定基因组不稳定性和组织损伤的遗传毒性因子。CD-1小鼠体内研究表明,膀胱内滴注埃及血吸虫抗原会引起炎症和尿路上皮发育不良 [10] 。据推测,埃及血吸虫通过诱导K-RAS突变而致癌 [11] 。为了对抗蠕虫感染,炎症细胞会释放活性氧(ROS)和活性氮,它们在低浓度下长期释放,作为细胞内和细胞间的第二信使,调节细胞增殖、凋亡和基因表达 [12] 。

2.1.2. 细菌感染

细菌感染与BC发展之间的相关性仍存在争议。一些作者报道,有复发性尿路感染史(12个月内24次或25次以上)的患者发生BC的风险更高,而抗生素治疗的UTI事件较少,BC风险较低 [13] 。相反,Jiang等人发现,复发性UTI患者的BC风险显著降低,这可能是由于抗菌治疗的抗癌作用、非甾体抗炎药暴露率较高以及膀胱感染诱导的免疫反应所致 [14] 。

2.1.3. 病毒

高危型人瘤病毒(human papillomavirus, HPV)感染是包括癌在内的多种肿瘤发生的关键因素。携带HPV基因组的细胞显示一氧化氮(NO)水平升高,这助长了炎症并增强了DNA损伤 [15] 。HPV基因组包含编码E7癌蛋白的基因,该基因使通常抑制p16的视网膜母细胞瘤(Rb)抑癌基因失活,因此高水平的p16表达可用作HPV感染的替代标志物。

尚未对HPV在膀胱癌发生中的作用有透彻的了解。一些作者认为HPV是致病因素 [16] 。

2.2. 非感染性原因

泌尿生殖道的炎症过程可由感染性以外的原因引起。局部机械性疾病可引起尿路上皮的化生改变(例如囊肿和腺体炎、肠化生和肾源性腺瘤)或有进展为恶性肿瘤风险的病变(例如角化鳞状化生)。脊髓损伤导致神经源性膀胱和长期留置导尿管已被确定为BC的危险因素,但文献数据相互矛盾。尽管相关文献报道脊髓损伤患者的BC风险高于一般人群 [17] ,但其他证据表明,需要留置导管的脊髓损伤患者发生膀胱鳞状细胞癌(squamous cell carcinoma, SCC)的风险增加(42%),而不是其他类型的导管插入术(例如,清洁间歇性导管插入术、避孕套)或自然排尿 [18] 。

3. 炎症细胞与膀胱癌的关系

恶性肿瘤的发生和发展与全身炎症反应密切相关。炎症是恶性肿瘤与其危险因素之间的联系,包括吸烟、饮酒、肥胖、高血脂、高血糖、紫外线、辐射以及慢性细菌、病毒或寄生虫感染。这些因素最终会激活局部或全身促炎途径,导致宿主细胞的基因组不稳定,从而使机体容易发生恶性转化,并直接或间接地推动恶性肿瘤细胞增殖和生长 [19] 。炎症细胞是肿瘤微环境重要组成成分,能够诱导和维护肿瘤血管生成,促使肿瘤细胞增殖、浸润和播散转移。其中淋巴细胞、中性粒细胞、单核细胞等越来越多地被认识到在致癌和肿瘤进展中具有重要作用。目前,已经有许多研究表明炎症与膀胱癌的进展及预后密切相关。

3.1. 中性粒细胞(NE)

作为免疫系统的第一道防线,中性粒细胞是循环血管生成调节趋化因子、生长因子和蛋白酶的主要来源,并参与肿瘤血管生成 [20] 。1988年,Shau HY [21] 等人研究发现,中性粒细胞可抑制淋巴因子对肿瘤细胞的杀伤功能,使发生远处转移的风险增加。随后,越来越多的研究证明中性粒细胞是一个非常重要的独立预后参数,影响许多恶性肿瘤的预后,如肺癌、胃癌、乳腺癌等。

3.2. 肿瘤相关巨噬细胞(TAM)

巨噬细胞起源于从骨髓释放到血液中的未成熟前体,并迁移到外周组织,它们对特定微环境信号的反应不同。TAM是许多肿瘤基质的主要炎症成分,影响肿瘤组织的不同方面。已知巨噬细胞通过启动转移前部位并使肿瘤细胞外渗和存活来促进转移。它们分为促炎(M1)和抗炎(M2)巨噬细胞。在几种癌症类型中,高TAM浸润与预后不良之间的关系表明它们在促进肿瘤生长方面的作用 [22] 。Yang等人采用原位尿BC模型,指出浸润的TAM可以通过旁分泌的VEGF-C/D来帮助肿瘤诱导的淋巴管生成 [23] 。事实上,氯膦酸盐脂质体的TAM耗竭导致淋巴管生成和淋巴转移的显着抑制。BCG免疫治疗后CD68+ TAM浸润似乎与治疗反应较差和无复发生存期缩短有关,然而,使用CD68+细胞密度作为肿瘤诱导炎症反应的生物标志物需要进一步验证 [24] 。

3.3. 髓源性抑制细胞(MDSC)

髓源性抑制细胞(MDSC)构成异质细胞群,形态类似于未成熟的粒细胞、单核细胞和树突状细胞(DC),具有很强的免疫抑制和血管生成活性。这些细胞抑制各种类型的免疫反应的能力似乎起源于通过未解决的炎症防止广泛的组织损伤。MDSC参与多种疾病的调节,包括感染,自身免疫性疾病,创伤和癌症。在膀胱肿瘤异种移植模型中,MDSC已被证明有助于尿路上皮癌的进展。Eruslanov等人将癌细胞分泌的PGE2确定为骨髓祖细胞分化为MDSC的启动子,这表明增强的癌症相关炎症和PGE2代谢失调可诱导免疫抑制性促肿瘤表型髓系细胞 [25] 。此外,一些研究表明,MDSC数量与BC患者的晚期临床阶段和不良的肿瘤学结果相关。Fridlender等人证明,在病毒免疫治疗后给予顺铂和吉西他滨可降低包括MDSCs在内的免疫抑制细胞的密度,显著提高多种肿瘤动物模型中的抗肿瘤疗效 [26] 。基于这一证据,针对BC的转移和挽救环境中使用已知调节MDSCs的药物进行全身治疗的研究正在进行中。

3.4. 肿瘤浸润淋巴细胞(TIL)

肿瘤浸润淋巴细胞(TIL)是与其他肿瘤浸润免疫细胞(如巨噬细胞、DC和肥大细胞)相比,对肿瘤细胞具有更高特异性免疫反应性的选定T细胞群。TIL是肿瘤微环境的主要组成部分,由CD3+ CD4+ (辅助细胞)和CD3+ CD8+ (细胞毒性) T细胞组成。TIL作为肿瘤免疫反应的潜在预后和预测生物标志物的作用已被广泛研究,尽管结果尚无定论。一些作者已经证明,在接受根治性膀胱切除术的BC患者中,大量CD3+淋巴细胞与更好的OS之间存在相关性 [27] 。Sharma等在MIBC患者中证实了这种相关性,但在接受TUR或RC治疗的NMIBC患者中未证实这种相关性 [28] 。在肿瘤组织中发现CD4+ Th17细胞的比例高于BC患者的外周血。尽管Th17细胞在肿瘤发展中的作用在很大程度上仍未知,但Th17和Treg细胞之间的平衡可能参与尿路上皮癌变,并成为侵袭性疾病的治疗靶点 [29] 。

4. 炎症相关分子与膀胱癌的关系

4.1. 细胞因子

细胞因子是一类小蛋白,在调节炎症和调节细胞活动(包括生长、存活和分化)中充当信号分子。转化生长因子(TGF) β1是一种强烈影响细胞生长和表型的细胞因子,在几种类型的癌症中过表达。一项病例对照研究评估了IL-8与尿路上皮BC风险的相关性,发现BC组织样本的相关性显著高于健康膀胱黏膜 [30] 。高级别肿瘤的MMP-9和IL-8表达水平明显高于低级别肿瘤 [31] 。与非浸润性肿瘤相比,MMP-9和IL-8表达增加也往往发生在pT1-T2肿瘤中。在人BC细胞中,TNF-α引起MMP-9的分泌,从而加速肿瘤侵袭和转移 [32] 。

4.2. 趋化因子

趋化因子是促炎细胞因子,在肿瘤生长和转移中起关键作用。在BC中,CXCL1控制促进肿瘤生长和侵袭的上皮–基质相互作用,其过表达与降低癌症特异性和总生存期(OS)降低显著相关 [33] 。CXCL5/CXCR2轴有利于BC细胞系中的迁移和侵袭,CXCL5与肿瘤分级、肌肉浸润和OS不良有关 [34] 。此外,尿CXCL1水平与TURT术后BC复发风险显著升高相关,提示CXCL1可用于预后预测 [34] 。

4.3. 其他

环氧合酶-2 (COX-2)将花生四烯酸转化为促炎性前列腺素类化合物,其异常表达似乎在包括BC在内的各种恶性肿瘤的发病机制中发挥作用。然而,一些作者将COX-2蛋白的表达与高病理分期、血管浸润和淋巴结转移相关 [35] 。成纤维细胞生长因子受体1 (FGFR1)的激活增强了其在BC中的活性,并且似乎通过APK/PLCγ/COX-2通路促进EMT [36] 。研究显示,UTI和BC患者的尿PGE2水平高于年龄匹配的对照组,成功治疗的患者的尿PGE2水平显著低于活动性疾病患者 [37] 。最近的数据显示,PGE2受体EP1-4与非肌层浸润性膀胱癌(non-muscle invasive bladder cancer, NMIBC)的肿瘤分级和癌症复发有关 [38] 。

最后,由一氧化氮合酶(NOS)产生的一氧化氮(NO)参与人膀胱良性和恶性组织的血管生成过程 [39] 。BC患者的NO水平明显高于对照组,但NO与肿瘤分级之间没有关系 [40] 。

5. 炎症作为膀胱癌的治疗靶点

慢性炎症与癌症之间的关联促使研究人员在癌症护理中瞄准炎症。这些靶标包括COX、NF-κB、细胞因子/趋化因子及其受体、FGF及其受体以及VEGF。在几种肿瘤(即胰腺、前列腺、宫颈、乳腺、肺和结肠)中,COX的过表达与血管生成增强有关,血管生成是肿瘤侵袭和转移的关键步骤,以及细胞凋亡耐药性增加 [41] 。

非甾体抗炎药(nonsteroidal anti-inflammatory drug, NSAID)是COX竞争性抑制剂,已用于癌症治疗和预防 [42] 。COX-2/PGE2信号通路在结直肠肿瘤发生中的作用已经确定,但在其他肿瘤类型中仍有待确定 [43] 。Dhawan等人在选择膀胱切除术的侵袭性BC患者中测试了塞来昔布(选择性COX-2抑制剂)的短期术前给药,导致肿瘤细胞凋亡增加 [44] 。相反,在一项针对NMIBC设计的随机IIb/III期试验中,Sabichi等人发现,与安慰剂相比,塞来昔布给药后异时性复发仅略有减少 [45] 。

一项针对未接受过BCG治疗的NMIBC患者的I.期试验显示,ALT-803和BCG联合治疗具有抗肿瘤活性,安全性良好,所有患者在24个月时均无病 [46] 。基于这些数据,一项评估ALT-803联合BCG治疗既往BCG治疗失败患者的单臂II期研究正在进行中(NCT03022825)。

ALT-801是一种重组人源化T细胞受体(TCR)-IL-2融合蛋白,可促进NK细胞和T细胞对表达p53的肿瘤细胞的细胞毒性免疫反应。一项I.期试验显示,静脉输注ALT-801和吉西他滨有望在卡介苗耐药的NMIBC患者中发挥持久的临床活性 [47] 。

6. 展望

炎症与癌症密切相关,在肿瘤的发生和进展中起着关键作用。富含炎症细胞、生长因子和DNA损伤的微环境可诱导组织损伤和上皮细胞突变的积累,从而增强其生长。突变的细胞反过来合成细胞因子并聚集炎症细胞,从而建立炎症肿瘤微环境,参与血管生成、迁移和转移。由于炎症介质在肿瘤中的表达高于正常组织中,因此单独使用抗炎药或与化疗一起使用可以为预防和治疗癌症提供有效的贡献。

NOTES

*通讯作者。

参考文献

[1] Wigner, P., Grębowski, R., Bijak, M., Saluk-Bijak, J. and Szemraj, J. (2021) The Interplay between Oxidative Stress, In-flammation and Angiogenesis in Bladder Cancer Development. International Journal of Molecular Sciences, 22, Article 4483.
https://doi.org/10.3390/ijms22094483
[2] de Andrade, C.T., Rocha, G.Z., Zamuner, M., Dos Reis, R.B. and Reis, L.O. (2022) Obesity Influence on Bladder Inflammation and Cancer: A Cystitis Model. International Journal of Clinical and Experimental Pathology, 15, 373-379.
[3] Ngabire, D. and Kim, G.D. (2017) Autophagy and Inflamma-tory Response in the Tumor Microenvironment. International Journal of Molecular Sciences, 18, Article 2016.
https://doi.org/10.3390/ijms18092016
[4] Porta, C., Larghi, P., Rimoldi, M., Totaro, M.G., Allavena, P., Manto-vani, A. and Sica, A. (2009) Cellular and Molecular Pathways Linking Inflammation and Cancer. Immunobiology, 214, 761-777.
https://doi.org/10.1016/j.imbio.2009.06.014
[5] Nesi, G., Nobili, S., Cai, T., Caini, S. and Santi, R. (2015) Chronic Inflammation in Urothelial Bladder Cancer. Virchows Archiv, 467, 623-633.
https://doi.org/10.1007/s00428-015-1820-x
[6] Kuper, H., Adami, H.O. and Trichopoulos, D. (2000) Infections as a Major Preventable Cause of Human Cancer. Journal of Internal Medicine, 248, 171-183.
https://doi.org/10.1046/j.1365-2796.2000.00742.x
[7] Lobo, N., Afferi, L., Moschini, M., Mostafid, H., Porten, S., Psutka, S.P., Gupta, S., Smith, A.B., Williams, S.B. and Lotan, Y. (2022) Epidemiology, Screening, and Prevention of Bladder Cancer. European Urology Oncology, 5, 628-639.
https://doi.org/10.1016/j.euo.2022.10.003
[8] Jubber, I., Ong, S., Bukavina, L., Black, P.C., Compérat, E., Kamat, A.M., Kiemeney, L., Lawrentschuk, N., Lerner, S.P., Meeks, J.J., Moch, H., Necchi, A., Panebianco, V., Sridhar, S.S., Znaor, A., Catto, J.W.F. and Cumberbatch, M.G. (2023) Epidemiology of Bladder Cancer in 2023: A Systematic Review of Risk Factors. European Urology, 84, 176-190.
https://doi.org/10.1016/j.eururo.2023.03.029
[9] Hannan, T.J., Mysorekar, I.U., Hung, C.S., Isaacson-Schmid, M.L. and Hultgren, S.J. (2010) Early Severe Inflammatory Responses to Uropathogenic E. Coli Predispose to Chronic and Recurrent Urinary Tract Infection. PLOS Pathogens, 6, e1001042.
https://doi.org/10.1371/journal.ppat.1001042
[10] Abol-Enein, H. (2008) Infection: Is It a Cause of Bladder Cancer? Scandinavian Journal of Urology and Nephrology, 42, 79-84.
https://doi.org/10.1080/03008880802325309
[11] Botelho, M.C., Oliveira, P.A., Lopes, C., Correia da Costa, J.M. and Machado, J.C. (2011) Urothelial Dysplasia and Inflammation Induced by Schistosoma haematobium Total Antigen Instillation in Mice Normal Urothelium. Urologic Oncology: Seminars and Original Investigations, 29, 809-814.
https://doi.org/10.1016/j.urolonc.2009.09.017
[12] Botelho, M.C., Machado, J.C. and da Costa, J.M. (2010) Schistosoma haematobium and Bladder Cancer: What Lies Beneath? Virulence, 1, 84-87.
https://doi.org/10.4161/viru.1.2.10487
[13] Ohshima, H., Tatemichi, M. and Sawa, T. (2003) Chemical Basis of In-flammation-Induced Carcinogenesis. Archives of Biochemistry and Biophysics, 417, 3-11.
https://doi.org/10.1016/S0003-9861(03)00283-2
[14] Kantor, A.F., Hartge, P., Hoover, R.N., Narayana, A.S., Sul-livan, J.W. and Fraumeni Jr., J.F. (1984) Urinary Tract Infection and Risk of Bladder Cancer. American Journal of Epi-demiology, 119, 510-515.
https://doi.org/10.1093/oxfordjournals.aje.a113768
[15] Jiang, X., Castelao, J.E., Groshen, S., Cortessis, V.K., Shibata, D., Conti, D.V., Yuan, J.M., Pike, M.C. and Gago-Dominguez, M. (2009) Urinary Tract Infections and Re-duced Risk of Bladder Cancer in Los Angeles. British Journal of Cancer, 100, 834-839.
https://doi.org/10.1038/sj.bjc.6604889
[16] Wei, L., Gravitt, P.E., Song, H., Maldonado, A.M. and Ozbun, M.A. (2009) Nitric Oxide Induces Early Viral Transcription Coincident with Increased DNA Damage and Mutation Rates in Human Papillomavirus-Infected Cells. Cancer Research, 69, 4878-4884.
https://doi.org/10.1158/0008-5472.CAN-08-4695
[17] Guma, S., Maglantay, R., Lau, R., Wieczorek, R., Melamed, J., Deng, F.M., Zhou, M., Makarov, D., Lee, P., Pincus, M.R., et al. (2016) Papillary Urothelial Carcinoma with Squa-mous Differentiation in Association with Human Papilloma Virus: Case Report and Literature Review. American Journal of Clinical and Experimental Urology, 4, 12-16.
[18] Groah, S.L., Weitzenkamp, D.A., Lammertse, D.P., Whiteneck, G.G., Lezotte, D.C. and Hamman, R.F. (2002) Excess Risk of Bladder Cancer in Spinal cord Injury: Evidence for an Association between Indwelling Catheter Use and Bladder Cancer. Archives of Physical Medicine and Rehabilitation, 83, 346-351.
https://doi.org/10.1053/apmr.2002.29653
[19] Song, J., Li, A., Qian, Y., Liu, B., Lv, L., Ye, D., Sun, X. and Mao, Y. (2022) Genetically Predicted Circulating Levels of Cytokines and the Risk of Cancer. Frontiers in Immunology, 13, Article 886144.
https://doi.org/10.3389/fimmu.2022.886144
[20] Song, S., Chen, H., Dou, X., Wang, K., Yan, J. and Yu, C. (2022) The Prognostic Value of before Treatment Neutrophil-to-Lymphocyte Ratio in Nasopharyngeal Carcinoma. European Archives of Oto-Rhino-Laryngology, 279, 2485-2492.
https://doi.org/10.1007/s00405-021-07070-3
[21] Shau, H.Y. and Kim, A. (1988) Suppression of Lymphokine-Activated Killer Induction by Neutrophils. The Journal of Immu-nology, 141, 4395-4402.
https://doi.org/10.4049/jimmunol.141.12.4395
[22] Bingle, L., Brown, N.J. and Lewis, C.E. (2002) The Role of Tumour-Associated Macrophages in Tumour Progression: Implications for New Anticancer Therapies. The Journal of Pathology, 196, 254-265.
https://doi.org/10.1002/path.1027
[23] Yang, H., Kim, C., Kim, M.J., Schwendener, R.A., Alitalo, K., Heston, W., Kim, I., Kim, W.J. and Koh, G.Y. (2011) Soluble Vascular Endothelial Growth Factor Receptor-3 Suppresses Lymphan-giogenesis and Lymphatic Metastasis in Bladder Cancer. Molecular Cancer, 10, Article No. 36.
https://doi.org/10.1186/1476-4598-10-36
[24] Ayari, C., LaRue, H., Hovington, H., Caron, A., Bergeron, A., Têtu, B., Fradet, V. and Fradet, Y. (2013) High Level of Mature Tumor-Infiltrating Dendritic Cells Predicts Progression to Muscle Invasion in Bladder Cancer. Human Pathology, 44, 1630-1637.
https://doi.org/10.1016/j.humpath.2013.01.014
[25] Eruslanov, E., Daurkin, I., Vieweg, J., Daaka, Y. and Kusmartsev, S. (2011) Aberrant PGE2 Metabolism in Bladder Tumor Microenvironment Promotes Immunosuppressive Phenotype of Tumor-Infiltrating Myeloid Cells. International Immunopharmacology, 11, 848-855.
https://doi.org/10.1016/j.intimp.2011.01.033
[26] Fridlender, Z.G., Sun, J., Singhal, S., Kapoor, V., Cheng, G., Suzuki, E. and Albelda, S.M. (2010) Chemotherapy Delivered after Viral Immunogene Therapy Augments Antitumor Efficacy Via Multiple Immune-Mediated Mechanisms. Molecular Therapy, 18, 1947-1959.
https://doi.org/10.1038/mt.2010.159
[27] Winerdal, M.E., Marits, P., Winerdal, M., Hasan, M., Rosenblatt, R., Tolf, A., Selling, K., Sherif, A. and Winqvist, O. (2011) FOXP3 and Survival in Urinary Bladder Cancer. BJU International, 108, 1672-1678.
https://doi.org/10.1111/j.1464-410X.2010.10020.x
[28] Sharma, P., Shen, Y., Wen, S., Yamada, S., Jungbluth, A.A., Gnjatic, S., Bajorin, D.F., Reuter, V.E., Herr, H., Old, L.J., et al. (2007) CD8 Tumor-Infiltrating Lymphocytes Are Predictive of Survival in Muscle-Invasive Urothelial Carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 104, 3967-3972.
https://doi.org/10.1073/pnas.0611618104
[29] Chi, L.J., Lu, H.T., Li, G.L., Wang, X.M., Su, Y., Xu, W.H. and Shen, B.Z. (2010) Involvement of T Helper Type 17 and Regulatory T Cell Activity in Tumour Immunology of Bladder Carcinoma. Clinical and Experimental Immunology, 161, 480-489.
https://doi.org/10.1111/j.1365-2249.2010.04215.x
[30] Pignot, G., Bieche, I., Vacher, S., Güet, C., Vieillefond, A., Debré, B., Lidereau, R. and Amsellem-Ouazana, D. (2009) Large-Scale Real-Time Reverse Transcription-PCR Approach of Angiogenic Pathways in Human Transitional Cell Carcinoma of the Bladder: Identification of VEGFA as a Major In-dependent Prognostic Marker. European Urology, 56, 678-689.
https://doi.org/10.1016/j.eururo.2008.05.027
[31] Reis, S.T., Leite, K.R., Piovesan, L.F., Pontes-Junior, J., Viana, N.I., Abe, D.K., Crippa, A., Moura, C.M., Adonias, S.P., Srougi, M., et al. (2012) Increased Expression of MMP-9 and IL-8 Are Correlated with Poor Prognosis of Bladder Cancer. BMC Urology, 12, Article No. 18.
https://doi.org/10.1186/1471-2490-12-18
[32] Lee, S.J., Park, S.S., Lee, U.S., Kim, W.J. and Moon, S.K. (2008) Signaling Pathway for TNF-α-Induced MMP-9 Expression: Mediation through p38 MAP Kinase, and Inhibition by An-ti-Cancer Molecule Magnolol in Human Urinary Bladder Cancer 5637 Cells. International Immunopharmacology, 8, 1821-1826.
https://doi.org/10.1016/j.intimp.2008.08.018
[33] Miyake, M., Lawton, A., Goodison, S., Urquidi, V., Gomes-Giacoia, E., Zhang, G., Ross, S., Kim, J. and Rosser, C.J. (2013) Chemokine (C-X-C) Ligand 1 (CXCL1) Pro-tein Expression Is Increased in Aggressive Bladder Cancers. BMC Cancer, 13, Article No. 322.
https://doi.org/10.1186/1471-2407-13-322
[34] Murai, R., Itoh, Y., Kageyama, S., Nakayama, M., Ishigaki, H., Teramoto, K., Narita, M., Yoshida, T., Tomita, K., Kobayashi, K.I., et al. (2018) Prediction of Intravesical Recurrence of Non-Muscle-Invasive Bladder Cancer by Evaluation of Intratumoral Foxp3+ T Cells in the Primary Transurethral Resec-tion of Bladder Tumor Specimens. PLOS ONE, 13, e0204745.
https://doi.org/10.1371/journal.pone.0204745
[35] Margulis, V., Shariat, S.F., Ashfaq, R., Thompson, M., Sagalowsky, A.I., Hsieh, J.T. and Lotan, Y. (2007) Expression of Cyclooxygenase-2 in Normal Urothelium, and Super-ficial and Advanced Transitional Cell Carcinoma of Bladder. Journal of Urology, 177, 1163-1168.
https://doi.org/10.1016/j.juro.2006.10.033
[36] Tomlinson, D.C., Baxter, E.W., Loadman, P.M., Hull, M.A. and Knowles, M.A. (2012) FGFR1-Induced Epithelial to Mesenchymal Transition through MAPK/PLCγ/COX-2-Mediated Mechanisms. PLOS ONE, 7, e38972.
https://doi.org/10.1371/journal.pone.0038972
[37] Wheeler, M.A., Hausladen, D.A., Yoon, J.H. and Weiss, R.M. (2002) Prostaglandin E2 Production and Cyclooxygenase-2 Induction in Human Urinary Tract Infections and Bladder Cancer. Journal of Urology, 168, 1568-1573.
https://doi.org/10.1016/S0022-5347(05)64522-3
[38] Von der Emde, L., Goltz, D., Latz, S., Müller, S.C., Kristi-ansen, G., Ellinger, J. and Syring, I. (2014) Prostaglandin Receptors EP1-4 as a Potential Marker for Clinical Outcome in Urothelial Bladder Cancer. American Journal of Cancer Research, 4, 952-962.
[39] Ehsan, A., Sommer, F., Schmidt, A., Klotz, T., Koslowski, J., Niggemann, S., Jacobs, G., Engelmann, U., Addicks, K. and Bloch, W. (2002) Nitric Oxide Pathways in Human Bladder Carcinoma. The Distribution of Nitric Oxide Synthases, Soluble Guanylyl Cyclase, Cyclic Guanosine Monophosphate, and Nitrotyrosine. Cancer, 95, 2293-2301.
https://doi.org/10.1002/cncr.10942
[40] Gecit, I., Aslan, M., Gunes, M., Pirincci, N., Esen, R., Demir, H. and Ceylan, K. (2012) Serum Prolidase Activity, Oxidative Stress, and Nitric Oxide Levels in Patients with Bladder Cancer. Journal of Cancer Research and Clinical Oncology, 138, 739-743.
https://doi.org/10.1007/s00432-011-1136-4
[41] Zappavigna, S., Cossu, A.M., Grimaldi, A., Bocchetti, M., Ferra-ro, G.A., Nicoletti, G.F., Filosa, R. and Caraglia, M. (2020) Anti-Inflammatory Drugs as Anticancer Agents. Interna-tional Journal of Molecular Sciences, 21, Article 2605.
https://doi.org/10.3390/ijms21072605
[42] Xu, X.C. (2002) COX-2 Inhibitors in Cancer Treatment and Prevention, a Recent Development. Anti-Cancer Drugs, 13, 127-137.
https://doi.org/10.1097/00001813-200202000-00003
[43] Greenhough, A., Smartt, H.J., Moore, A.E., Roberts, H.R., Williams, A.C., Paraskeva, C. and Kaidi, A. (2009) The COX-2/PGE2 Pathway: Key Roles in the Hallmarks of Cancer and Adaptation to the Tumour Microenvironment. Carcinogenesis, 30, 377-386.
https://doi.org/10.1093/carcin/bgp014
[44] Dhawan, D., Craig, B.A., Cheng, L., Snyder, P.W., Mohammed, S.I., Stewart, J.C., Zheng, R., Loman, R.A., Foster, R.S. and Knapp, D.W. (2010) Effects of Short-Term Celecoxib Treatment in Patients with Invasive Transitional Cell Carcinoma of the Urinary Bladder. Molecular Cancer Therapeutics, 9, 1371-1377.
https://doi.org/10.1158/1535-7163.MCT-10-0049
[45] Sabichi, A.L., Lee, J.J., Grossman, H.B., Liu, S., Richmond, E., Czerniak, B.A., De la Cerda, J., Eagle, C., Viner, J.L., Palmer, J.L., et al. (2011) A Randomized Controlled Trial of Celecoxib to Prevent Recurrence of Nonmuscle-Invasive Bladder Cancer. Cancer Prevention Research, 4, 1580-1589.
https://doi.org/10.1158/1940-6207.CAPR-11-0036
[46] Rosser, C.J., Nix, J., Ferguson, L., Hernandez, L. and Wong, H.C. (2018) Phase Ib Trial of ALT-803, an IL-15 Superagonist, plus BCG for the Treatment of BCG-Naive Pa-tients with Non-Muscle-Invasive Bladder Cancer. Journal of Clinical Oncology, 36, 510.
https://doi.org/10.1200/JCO.2018.36.6_suppl.510
[47] Sonpavde, G., Rosser, C.J., Pan, C., Parikh, R.A., Nix, J., Gingrich, J.R., Hernandez, L., Huang, B. and Wong, H.C. (2016) Phase I Trial of ALT-801, a First-in-Class T-Cell Re-ceptor (TCR)-Interleukin (IL)-2 Fusion Molecule, plus Gemcitabine (G) for Bacillus Calmette Guerin (BCG)-Resistant Non-Muscle-Invasive Bladder Cancer (NMIBC). Journal of Clinical Oncology, 34, 451-451.
https://doi.org/10.1200/jco.2016.34.2_suppl.451