Skip to main content
Log in

Niacin metabolism and Parkinson’s disease

  • Review Article
  • Published:
Environmental Health and Preventive Medicine Aims and scope

Abstract

Epidemiological surveys suggest an important role for niacin in the causes of Parkinson’s disease, in that niacin deficiency, the nutritional condition that causes pellagra, appears to protect against Parkinson’s disease. Absorbed niacin is used in the synthesis of nicotinamide adenine dinucleotide (NAD) in the body, and in the metabolic process NAD releases nicotinamide by poly(ADP-ribosyl)ation, the activation of which has been reported to mediate 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson’s disease. Recently nicotinamide N-methyltransferase (EC2.1.1.1) activity has been discovered in the human brain, and the released nicotinamide may be methylated to 1-methylnicotinamide (MNA), via this enzyme, in the brain. A deficiency in mitochondrial NADH: ubiquinone oxidoreductase (complex 1) activity is believed to be a critical factor in the development of Parkinson’s disease. MNA has been found to destroy several subunits of cerebral complex 1, leading to the suggestion that MNA is concerned in the pathogenesis of Parkinson’s disease. Based on these findings, it is hypothesized that niacin is a causal substance in the development of Parkinson’s disease through the following processes: NAD produced from niacin releases nicotinamide via poly(ADP-ribosyl)ation, activated by the hydroxyl radical. Released excess nicotinamide is methylated to MNA in the cytoplasm, and superoxides formed by MNA via complex I destroy complex 1 subunits directly, or indirectly via mitochondrial DNA damage. Hereditary or environmental factors may cause acceleration of this cycle, resulting in neuronal death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Scheffler IE. Mitochondria make a come back. Adv Drug Deliv Rev. 2001; 49: 3–26.

    Article  PubMed  CAS  Google Scholar 

  2. Fall PA, Fredrikson M, Axelson O, Granerus AK. Nutritional and occupational factors influencing the risk of Parkinson’s disease: a case-control study in southeastern Sweden. Mov Disord. 1999; 14: 28–37.

    Article  PubMed  CAS  Google Scholar 

  3. Hellenbrand W, Boeing H, Robra BP, Seidler A, Vieregge P, Nischan P, Joerg J, Oertel WH, Schneider U, Ulm G. Diet and Parkinson’s disease. II: A possible role for the past intake of specific nutrients. Results from a self-administered foodfrequency questionnaire in a case-control study. Neurology. 1996; 47: 644–650.

    PubMed  CAS  Google Scholar 

  4. Abbott RD, Ross GW, White LR, Sanderson WT, Burchfiel CM, Kashon M, Sharp DS, Masaki KH, Curb JD, Petrovitch H. Environmental, life-style, and physical precursors of clinical Parkinson’s disease: recent findings from the Honolulu-Asia Aging Study. J Neurol. 2003; 250 (Suppl 3): III30–39.

    PubMed  Google Scholar 

  5. Johnson CC, Gorell JM, Rybicki BA, Sanders K, Peterson EL. Adult nutrient intake as a risk factor for Parkinson’s disease. Int J Epidemiol. 1999; 28: 1102–1109.

    Article  PubMed  CAS  Google Scholar 

  6. Ross GW, Abbott RD, Petrovitch H, Morens DM, Grandinetti A, Tung KH, Tanner CM, Masaki KH, Blanchette PL, Curb JD, Popper JS, White LR. Association of coffee and caffeine intake with the risk of Parkinson disease. JAMA. 2000; 283: 2674–2679.

    Article  PubMed  CAS  Google Scholar 

  7. Pearl SM, Antion MD, Stanwood GD, Jaumotte JD, Kapatos G, Zigmond MJ. Effects of NADH on dopamine release in rat striatum. Synapse. 2000; 36: 95–101.

    Article  PubMed  CAS  Google Scholar 

  8. Tanner CM. The role of environmental toxines in the etiology of Parkinson’s disease. Trends Neurosci. 1989; 12: 49–54.

    Article  PubMed  CAS  Google Scholar 

  9. Gershanik OS, Luquin MR, Scipioni O, Obeso JA. Isoniazid therapy in Parkinson’s disease. Mov Disord. 1988; 3: 133–139.

    Article  PubMed  CAS  Google Scholar 

  10. Fujii C, Harada S, Ohkoshi N, Hayashi A, Yoshizawa K. Study on Parkinson’s disease and alcohol drinking. Nihon Arukoru Yakubutsu Igakkai Zasshi. 1998; 33: 683–691.

    PubMed  CAS  Google Scholar 

  11. Tanner CM, Ottman R, Goldman SM, Ellenberg J, Chan P, Mayeux R, Langston JW. Parkinson disease in twins: an etiologic study. JAMA. 1999; 281: 341–346.

    Article  PubMed  CAS  Google Scholar 

  12. Baptista MJ, Cookson MR, Miller DW. Parkin and alphasynuclein: opponent actions in the pathogenesis of Parkinson’s disease. Neuroscientist. 2004; 10: 63–72.

    Article  PubMed  CAS  Google Scholar 

  13. Piccinin GL, Piccirilli M, Finali G, Stefano E. MPTP: a new chapter in the history of Parkinson’s disease. Riv Neurol. 1989; 59: 103–107.

    PubMed  CAS  Google Scholar 

  14. Williams AC, Pall HS, Steventon GB, Green S, Buttum S, Molloy H, Waring RH. N-methylation of pyridines and Parkinson’s disease. In: Narabayashi H, Nagatsu T, Yanagisawa N, Mizuno Y, editors. Advances in Neurology, vol. 60. New York: Raven Press, 1993: p. 194–196.

    Google Scholar 

  15. Busch AE, Karbach U, Miska D, Gorboulev V, Akhoundova A, Volk C, Arndt P, Ulzheimer JC, Sonders MS, Baumann C, Waldegger S, Lang F, Koepsell H. Human neurons express the polyspecific cation transporter hOCT2, which translocates monoamine neurotransmitters, amantadine, and memantine. Mol Pharmacol. 1998; 54: 342–352.

    PubMed  CAS  Google Scholar 

  16. Köppen A, Klein J, Holler T, Löffelholz K. Synergistic effect of nicotinamide and choline administration on extracellular choline levels in the brain. J Pharmacol Exp Ther. 1993; 266: 720–725.

    PubMed  Google Scholar 

  17. Vargas HM, Jenden DJ. Elevation of cerebrospinal fluid choline levels by nicotinamide involves the enzymatic formation of N1-methylnicotinamide in brain tissue. Life Sci. 1996; 58: 1995–2002.

    Article  PubMed  CAS  Google Scholar 

  18. Orth M, Schapira AHV. Mitochondria and degenerative disorders. Am J Med Genet. 2001; 106: 27–36.

    Article  PubMed  CAS  Google Scholar 

  19. Schulz JB, Matthews RT, Klockgether T, Dichgans J, Beal MF. The role of mitochondrial dysfunction and neuronal nitric oxide in animal models of neurodegenerative diseases. Mol Cell Biochem. 1997; 174: 193–197.

    Article  PubMed  CAS  Google Scholar 

  20. Kosel S, Hothaus G, Maassen A, Vieregge P, Graeber MB. Role of mitochondria in Parkinson disease. Biol Chem. 1999; 380: 865–870.

    Article  PubMed  CAS  Google Scholar 

  21. Tanaka M, Kovalenko SA, Gong JS, Borgeld HJ, Katsumata K, Hayakawa M, Yoneda M, Ozawa T. Accumulation of deletions and point mutations in mitochondrial genome in degenerative diseases. Ann N Y Acad Sci. 1996; 786: 102–111.

    Article  PubMed  CAS  Google Scholar 

  22. Parker Jr WD, Boyson SJ, Parks JK: Abnormalities of the electron transport chain in idiopathic parkinson’s disease. Ann Neurol. 1989; 26: 719–723.

    Article  PubMed  Google Scholar 

  23. Schapira AH, Mann VM, Cooper JM, Dexter D, Daniel SE, Jenner P, Clark JB, Marsden CD. Anatomic and disease specificity of NADH CoQ1 reductase (complex 1) in Parkinson’s disease. J Neurochem. 1990; 55: 2142–2145.

    Article  PubMed  CAS  Google Scholar 

  24. Swerdlow RH, Parks JK, Miller SW, Tuttle JB, Trimmer PA, Sheehan JP, Bennett JP Jr, Davis RE, Parker WD Jr. Origin and functional consequences of the complex 1 defect in Parkinson’s disease. Ann Neurol. 1996; 40: 663–671.

    Article  PubMed  CAS  Google Scholar 

  25. Mizuno Y, Ohta S, Tanaka M, Takamiya S, Suzuki K, Sato T, Oya H, Ozawa T, Kagawa Y. Deficiencies in complex 1 subunits of the respiratory chain in Parkinson’s disease. Biochem Biophys Res Commun. 1989; 163: 1450–1455.

    Article  PubMed  CAS  Google Scholar 

  26. van der Walt JM, Nicodemus KK, Martin ER, Scott WK, Nance MA, Watts RL, Hubble JP, Haines JL, Koller WC, Lyons K, Pahwa R, Stern MB, Colcher A, Hiner BC, Jankovic J, Ondo WG, Allen FH Jr, Goetz CG, Small GW, Mastaglia F, Stajich JM, McLaurin AC, Middleton LT, Scott BL, Schmechel DE, Pericak-Vance MA, Vance JM. Mitochondrial polymorphisms significantly reduce the risk of Parkinson disease. Am J Hum Genet. 2003; 72: 804–811.

    Article  PubMed  Google Scholar 

  27. DiDonato S, Zeviani M, Giovannini P, Savarese N, Rimoldi M, Mariotti C, Girotti F, Caraceni T. Respiratory chain and mitochondrial DNA in muscle and brain in Parkinson’s disease patients. Neurology. 1993; 43: 2262–2268.

    PubMed  CAS  Google Scholar 

  28. Sandy MS, Langston JW, Smith MT, Di Monte DA. PCR analysis of platelet mtDNA: lack of specific changes in Parkinson’s disease. Mov Disord. 1993; 8: 74–82.

    Article  PubMed  CAS  Google Scholar 

  29. Zhang J, Pieper A, Snyder SH. Poly(ADP-ribose) synthetase activation: an early indicator of neurotoxic DNA damage. J Neurochem. 1995; 65: 1411–1414.

    Article  PubMed  CAS  Google Scholar 

  30. Pieper AA, Verma A, Zhang J, Snyder SH. Poly (ADP-ribose) polymerase, nitric oxide and cell death. Trends Pharmacol Sci. 1999; 20: 171–181.

    Article  PubMed  CAS  Google Scholar 

  31. Boulu RG, Mesenge C, Charriaut-Marlangue C, Verrecchia C, Plotkine M. Neuronal death: potential role of the nuclear enzyme, poly (ADP-ribose) polymerase. Bull Acad Natl Med. 2001; 185: 555–563.

    PubMed  CAS  Google Scholar 

  32. Brune B, Dimmeler S, Molina Y, Vedia L, Lapetina EG. Nitric oxide: a signal for ADP-ribosylation of proteins. Life Sci. 1994; 54: 61–70.

    Article  PubMed  CAS  Google Scholar 

  33. Dimmeler S, Brune B. Characterization of a nitric-oxide-catalysed ADP-ribosylation of glyceraldehyde-3-phosphate dehydrogenase. Eur J Biochem. 1992; 210: 305–310.

    Article  PubMed  CAS  Google Scholar 

  34. Zhang J, Snyder SH. Nitric oxide stimulates auto-ADP-ribosylation of glyceraldehyde-3-phosphate dehydrogenase. Proc Natl Acad Sci U S A. 1992; 89: 9382–9385.

    Article  PubMed  CAS  Google Scholar 

  35. Lo EH, Bosque-Hamilton P, Meng W. Inhibition of poly(ADP-ribose) polymerase: reduction of ischemic injury and attenuation of N-methyl-D-aspartate-induced neurotransmitter dysregulation. Stroke. 1998; 29: 830–836.

    PubMed  CAS  Google Scholar 

  36. Takahashi K, Pieper AA, Croul SE, Zhang J, Snyder SH, Greenberg JH. Post-treatment with an inhibitor of poly(ADP-ribose) polymerase attenuates cerebral damage in focal ischemia. Brain Res. 1999; 829: 46–54.

    Article  PubMed  CAS  Google Scholar 

  37. Hageman GJ, Stierum RH, van Herwijnen MH, van der Veer MS, Kleinjans JC. Nicotinic acid supplementation: effects on niacin status, cytogenetic damage, and poly(ADP-ribosylation) in lymphocytes of smokers. Nutr Cancer. 1998; 32: 113–120.

    Article  PubMed  CAS  Google Scholar 

  38. Mandir AS, Przedborski S, Jackson-Lewis V, Wang ZQ, Simbulan-Rosenthal CM, Smulson ME, Hoffman BE, Guastella DB, Dawson VL, Dawson TM. Poly(ADP-ribose) polymerase activation mediates 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism. Proc Natl Acad Sci U S A. 1999; 96: 5774–5779.

    Article  PubMed  CAS  Google Scholar 

  39. Cosi C, Colpaert F, Koek W, Degryse A, Marien M. Poly(ADP)-ribose) polymerase inhibitors protect against MPTP-induced depletions of striatal dopamine and cortical noradrenaline in C57B1/6 mice. Brain Res. 1996; 729: 264–269.

    PubMed  CAS  Google Scholar 

  40. Cosi C, Marien M. Decreases in mouse brain NAD and ATP induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): prevention by the poly(ADP-ribose) polymerase inhibitor, benzamide. Brain Res. 1998; 809: 58–67.

    Article  PubMed  CAS  Google Scholar 

  41. Shibata K. Nutritional factors affecting the activity of liver nicotinamide methyltransferase and urinary excretion of N1-methylnicotinamide in rats. Agric Biol Chem. 1986; 50: 1489–1493.

    CAS  Google Scholar 

  42. Sano A, Endo N, Takitani S. Fluorometric assay of rat tissue N-methyltransferases with nicotinamide and four isomeric methylnicotinamides. Chem Pharm Bull. 1992; 40: 153–156.

    PubMed  CAS  Google Scholar 

  43. Seifert R, Hoshino J, Kröger H. Nicotinamide methylation: tissue distribution, development and neoplastic changes. Biochim Biophys Acta. 1984; 801: 259–264.

    PubMed  CAS  Google Scholar 

  44. Fukushima T, Kaetsu A, Lim H, Moriyama M. Possible role of 1-methylnicotinamide in the pathogenesis of Parkinson’s disease. Exp Toxicol Pathol. 2002; 53: 469–473.

    Article  PubMed  CAS  Google Scholar 

  45. Matsubara K, Aoyama K, Suno M, Awaya T. N-methylation underlying Parkinson’s disease. Neurotoxicol Teratol. 2002; 24: 593–598.

    Article  PubMed  CAS  Google Scholar 

  46. Parsons RB, Smith SW, Waring RH, Williams AC, Ramsden DB. High expression of nicotinamide N-methyltransferase in patients with idiopathic Parkinson’s disease. Neurosci Lett. 2003; 342: 13–16.

    Article  PubMed  CAS  Google Scholar 

  47. Whillets JM, Lunec J, Williams AC, Griffiths HR. Neurotoxicity of nicotinamide derivatives; their role in the aetiology of Parkinson’s disease. Biochem Soc Trans. 1993; 21: 299S.

    Google Scholar 

  48. Fukushima T, Tawara T, Isobe A, Hojo N, Shiwaku K, Yamane Y. Radical formation site of cerebral complex I and Parkinson’s disease. J Neurosci Res. 1995; 42: 385–390.

    Article  PubMed  CAS  Google Scholar 

  49. Narabayashi H, Takeshige K, Minakami S. Alteration of inner-membrane components and damage to electron-transfer activities of bovine heart submitochondrial particles induced by NADPH-dependent lipid peroxidation. Biochem J. 1982; 202: 97–105.

    PubMed  CAS  Google Scholar 

  50. Chomyn A, Mariottini P, Cleeter MW, Ragan CI, Matsuno-Yagi A, Hatefi Y, Doolittle RF, Attardi G. Six unidentified reading frames of human mitochondrial DNA encode components of the respiratory-chain NADH dehydrogenase. Nature. 1985; 314: 592–597.

    Article  PubMed  CAS  Google Scholar 

  51. Triepels RH, Van Den Heuvel LP, Trijbels JM, Smeitink JA. Respiratory chain complex I deficiency. Am J Med Genet. 2001; 106: 37–45.

    Article  PubMed  CAS  Google Scholar 

  52. Peter AM. Structures and function of the water-soluble vitamins. In: David AB editor. Harper’s Biochemistry 25th edition. Stamford: Appleton & Lange, 2000: p. 676–678.

    Google Scholar 

  53. Food and Agriculture Organization of the United Nations. Rome Declaration on World Food Security and World Food Summit Plan of Action. Technical background documents 1–5. 1996.

  54. Cosnett JE, Bill PL. Parkinson’s disease in blacks. Observations on epidemiology in Natal. S Afr Med J. 1988; 73: 281–283.

    PubMed  CAS  Google Scholar 

  55. Lombard A, Gelfand M. Parkinson’s disease in the African. Cent Afr J Med. 1978; 24: 5–8.

    PubMed  CAS  Google Scholar 

  56. Kusumi M, Nakashima K, Harada H, Nakayama H, Takahashi K. Epidemiology of Parkinson’s disease in Yonago City, Japan: comparison with a study carried out 12 years ago. Neuroepidemiology. 1996; 15: 201–207.

    Article  PubMed  CAS  Google Scholar 

  57. Fukushima T, Moriyama M. Corn might prevent Parkinson’s disease. Clin Nutr. 2001; 20: 559.

    Article  Google Scholar 

  58. Fukushima T, Tanaka K, Ushijima K, Moriyama M. Retrospective study of preventive effect of maize on mortality from Parkinson’s disease in Japan. Asia Pac J Clin Nutr. 2003; 12: 447–450.

    PubMed  Google Scholar 

  59. National Nutrition Survey, Japan. The Ministry of Health and Welfare, Japan.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuhito Fukushima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukushima, T. Niacin metabolism and Parkinson’s disease. Environ Health Prev Med 10, 3–8 (2005). https://doi.org/10.1265/ehpm.10.3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1265/ehpm.10.3

Key words

Navigation