Microbes and Environments
Online ISSN : 1347-4405
Print ISSN : 1342-6311
ISSN-L : 1342-6311
Regular Papers
Compositional and Functional Shifts in the Epibiotic Bacterial Community of Shinkaia crosnieri Baba & Williams (a Squat Lobster from Hydrothermal Vents) during Methane-Fed Rearing
Tomo-o Watsuji Kaori MotokiEmi HadaYukiko NagaiYoshihiro TakakiAsami YamamotoKenji UedaTakashi ToyofukuHiroyuki YamamotoKen Takai
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML
Supplementary material

2018 Volume 33 Issue 4 Pages 348-356

Details
Abstract

The hydrothermal vent squat lobster Shinkaia crosnieri Baba & Williams harbors an epibiotic bacterial community, which is numerically and functionally dominated by methanotrophs affiliated with Methylococcaceae and thioautotrophs affiliated with Sulfurovum and Thiotrichaceae. In the present study, shifts in the phylogenetic composition and metabolic function of the epibiont community were investigated using S. crosnieri individuals, which were reared for one year in a tank fed with methane as the energy and carbon source. The results obtained indicated that indigenous predominant thioautotrophic populations, such as Sulfurovum and Thiotrichaceae members, became absent, possibly due to the lack of an energy source, and epibiotic communities were dominated by indigenous Methylococcaceae and betaproteobacterial methylotrophic members that adapted to the conditions present during rearing for 12 months with a supply of methane. Furthermore, the overall phylogenetic composition of the epibiotic community markedly changed from a composition dominated by chemolithotrophs to one enriched with cross-feeding heterotrophs in addition to methanotrophs and methylotrophs. Thus, the composition and function of the S. crosnieri epibiotic bacterial community were strongly affected by the balance between the energy and carbon sources supplied for chemosynthetic production as well as that between the production and consumption of organic compounds.

Content from these authors
© 2018 by Japanese Society of Microbial Ecology / Japanese Society of Soil Microbiology / Taiwan Society of Microbial Ecology / Japanese Society of Plant Microbe Interactions.
Previous article Next article
feedback
Top