Journal of Reproduction and Development
Online ISSN : 1348-4400
Print ISSN : 0916-8818
ISSN-L : 0916-8818
SRD Innovative Technology Award 2011
Oxidative Stress and Redox Regulation on In Vitro Development of Mammalian Embryos
Masashi TAKAHASHI
Author information
JOURNAL FREE ACCESS

2012 Volume 58 Issue 1 Pages 1-9

Details
Abstract

Many factors affect development of mammalian preimplantation embryos in vitro. It is well known that in vitro development of bovine embryos is highly affected by culture condition including energy source, growth factors, pH or gas environment. Many efforts have been made towards the suitable environments which can successfully support embryo development in vitro. For a rapid growth and differentiation, embryo requires energy by utilizing ATP, NADPH with oxygen molecules. These energy substrates are produced from the electron transport chain in the mitochondria. In addition to energy production, reactive oxygen species (ROS) are also generated as by-product of such energy production system. ROS production is sensitively controlled by the balance of oxidizing and reducing status and affected by several antioxidant enzymes such as superoxide dismutase (SOD), Catalase, glutathione peroxidase (GPx) or low molecular weight thiols such as glutathione (GSH). Imbalance of oxidation and reduction causes production of excess ROS, which causes the developmental arrest, physical DNA damage, apoptosis induction or lipid peroxidation. Environmental oxygen condition during embryo culture also highly affects embryo development as well as intracellular redox balance. Several studies have revealed that regulation of intra- and extra- cellular reducing environment by reducing excess ROS by using antioxidants, reducing oxygen concentration are effective for improving embryo development. Also, recent studies have demonstrated the difference in gene expression affected by oxidative stress. This review briefly summarizes the effects of ROS and the role of redox balance on preimplantation embryos for improving the efficiency of in vitro production of mammalian embryos.

Content from these authors
© 2012 Society for Reproduction and Development

この記事はクリエイティブ・コモンズ [表示 - 非営利 - 改変禁止 4.0 国際]ライセンスの下に提供されています。
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.ja
Next article
feedback
Top