Biochemical characterization of mRNA capping enzyme from Faustovirus

  1. G. Brett Robb
  1. New England Biolabs, Inc., Ipswich, Massachusetts 01938, USA
  1. Corresponding author: chan{at}neb.com

Abstract

The mammalian mRNA 5′ cap structures play important roles in cellular processes such as nuclear export, efficient translation, and evading cellular innate immune surveillance and regulating 5′-mediated mRNA turnover. Hence, installation of the proper 5′ cap is crucial in therapeutic applications of synthetic mRNA. The core 5′ cap structure, Cap-0, is generated by three sequential enzymatic activities: RNA 5′ triphosphatase, RNA guanylyltransferase, and cap N7-guanine methyltransferase. Vaccinia virus RNA capping enzyme (VCE) is a heterodimeric enzyme that has been widely used in synthetic mRNA research and manufacturing. The large subunit of VCE D1R exhibits a modular structure where each of the three structural domains possesses one of the three enzyme activities, whereas the small subunit D12L is required to activate the N7-guanine methyltransferase activity. Here, we report the characterization of a single-subunit RNA capping enzyme from an amoeba giant virus. Faustovirus RNA capping enzyme (FCE) exhibits a modular array of catalytic domains in common with VCE and is highly efficient in generating the Cap-0 structure without an activation subunit. Phylogenetic analysis suggests that FCE and VCE are descended from a common ancestral capping enzyme. We found that compared to VCE, FCE exhibits higher specific activity, higher activity toward RNA containing secondary structures and a free 5′ end, and a broader temperature range, properties favorable for synthetic mRNA manufacturing workflows.

Keywords

  • Received June 5, 2023.
  • Accepted August 7, 2023.

This article, published in RNA, is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/.

| Table of Contents
OPEN ACCESS ARTICLE