Accurate detection of chemical modifications in RNA by mutational profiling (MaP) with ShapeMapper 2

  1. Kevin M. Weeks
  1. Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
  1. Corresponding author: weeks{at}unc.edu

Abstract

Mutational profiling (MaP) enables detection of sites of chemical modification in RNA as sequence changes during reverse transcription (RT), subsequently read out by massively parallel sequencing. We introduce ShapeMapper 2, which integrates careful handling of all classes of adduct-induced sequence changes, sequence variant correction, basecall quality filters, and quality-control warnings to now identify RNA adduct sites as accurately as achieved by careful manual analysis of electrophoresis data, the prior highest-accuracy standard. MaP and ShapeMapper 2 provide a robust, experimentally concise, and accurate approach for reading out nucleic acid chemical probing experiments.

Keywords

  • Received April 28, 2017.
  • Accepted November 5, 2017.

This article is distributed exclusively by the RNA Society for the first 12 months after the full-issue publication date (see http://rnajournal.cshlp.org/site/misc/terms.xhtml). After 12 months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/.

| Table of Contents