Chemical and Pharmaceutical Bulletin
Online ISSN : 1347-5223
Print ISSN : 0009-2363
ISSN-L : 0009-2363
Regular Articles
Preparation of Glucagon-Like Peptide-1 Loaded PLGA Microspheres: Characterizations, Release Studies and Bioactivities in Vitro/in Vivo
Dongfeng YinYing LuHe ZhangGuoqing ZhangHao ZouDuxin SunYanqiang Zhong
Author information
JOURNAL FREE ACCESS

2008 Volume 56 Issue 2 Pages 156-161

Details
Abstract

The gut hormone glucagon-like peptide-1 (GLP-1) is proposed for treatment of Type II diabetes mellitus. However, the short half life of GLP-1 in vivo is a major limitation for its application due to the frequent invasive administrations. To provide a optimal formulation to overcome this limitation, we developed a GLP-1 entrapped microspheres to achieve sustained release GLP-1 for 4-week. GLP-1 was stabilized by GLP-1-zinc complexation with zinc carbonate and encapsulated in poly(D,L-lactic-co-glycolic acid) (PLGA) with S/O/O solvent extraction to obtain GLP-1 loaded PLGA microspheres (MS). The characteristics of MS were evaluated as follows: The surface morphyology was assessed by scanning electron microscopy (SEM); The drug encapsulation efficiency and GLP-1 controlled release profile was tested by HPLC; The sustained release of GLP-1 MS in vivo and pharmacological efficacy were studied in normal mice and streptozotocin (STZ)-induced diabetic mice model after subcutaneous administration of GLP-1 MS. GLP-1-zinc complexation significantly reduced initial burst release from 37.2 to 7.5%. The controlled release bioactive GLP-1 in vitro was achieved for 4-week period by zinc complexation and addition of ZnCO3. The optimal and complete cumulative release of GLP-1 from MS was increased from 23 to 63% in 28 d by using low MW PLGA (MW 14000). The in vivo testing in normal mice and diabetic mice suggest that this zinc-stabilized technique combined with S/O/O method in the presence of water insoluble antacid additive ZnCO3 preserve the biological activity of GLP-1. GLP-1 MS formulation achieved controlled released in vivo for 28 d and exhibit sustained long term pharmacological efficacy to decrease blood glucose level in diabetic mice. This GLP-1 MS formulation provides a practical formulation for long-term sustained delivery of GLP-1 to treat Type II diabetes.

Content from these authors
© 2008 The Pharmaceutical Society of Japan
Previous article Next article
feedback
Top