Biological and Pharmaceutical Bulletin
Online ISSN : 1347-5215
Print ISSN : 0918-6158
ISSN-L : 0918-6158
Note
Inhibition of TRPC4/5 Channel Is Effective in Protecting against Histamine-Induced Hyperpermeability by Blocking Ca2+ Influx in Lung Microvascular Endothelial Cells
Yan ZhouRui ZhangMingjie Dong
Author information
JOURNAL FREE ACCESS FULL-TEXT HTML
Supplementary material

2023 Volume 46 Issue 6 Pages 864-868

Details
Abstract

Dysfunction of lung microvascular endothelium is a major feature in the pathobiology of pulmonary edema and hypoxic respiratory failure. Histamine induces lung microvascular endothelial barrier disruption and hyperpermeability upon evoking intracellular Ca2+ ([Ca2+]i) dynamics via binding to its receptors. Transient receptor potential canonical (TRPC) channels are Ca2+-permeable channel and stimulated by the agonists of G-protein-coupled receptors (GPCR). Here, we assessed histamine induced [Ca2+]i increases in human lung microvascular endothelial cells (HLMVEC) by using live cell Ca2+ imaging. We found that histamine increased [Ca2+]i was maintained at a static elevated level after a transient peak. The elevated Ca2+ plateau was vanished when extracellular Ca2+ was removed, indicating Ca2+ influx from extracellular mediated the histamine-induced Ca2+ plateau. TRPC4/5 channels antagonists, ML204 (10 µM) and HC070 (1 µM), significantly inhibited the Ca2+ plateaus, which was not influenced by Pyr3 or larixyl, the antagonists of TRPC3/6. Furthermore, ML204 or HC070 effectively suppressed the permeability response to histamine in HLMVEC. Our results indicated that histamine-induced Ca2+ influx may be mediated by TRPC4/5 channels and the antagonist of the channel significantly improved histamine-induced HLMVEC dysfunction.

Fullsize Image
Content from these authors
© 2023 The Pharmaceutical Society of Japan
Previous article
feedback
Top