Skip to main content

Advertisement

Log in

Using a CA19-9 Tumor Marker Gene Test to Assess Outcome After Pancreatic Cancer Surgery

  • Pancreatic Tumors
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Cancer antigen 19-9 (CA19-9) is widely used as a marker of pancreatic cancer tumor burden and response to therapy. Synthesis of CA19-9 and its circulating levels are determined by variants encoding the fucosyltransferases, FUT2 and FUT3. Individuals can be grouped into one of four functional FUT groups (FUT3-null, FUT-low, FUT-intermediate, FUT-high), each with its own CA19-9 reference range based on its predicted capacity to produce CA19-9. The authors hypothesized that a FUT variant-based CA19-9 tumor marker gene test could improve the prognostic performance of CA19-9.

Methods

Preoperative and pre-treatment CA19-9 levels were measured, and FUT variants were determined in 449 patients who underwent surgery for pancreatic ductal adenocarcinoma (PDAC) at Johns Hopkins Hospital between 2010 and 2020, including 270 patients who underwent neoadjuvant therapy. Factors associated with recurrence-free and overall survival were determined in Cox proportional hazards models.

Results

Higher preoperative CA19-9 levels were associated with recurrence and mortality for patients in the higher-FUT groups (FUT-intermediate, FUT-high for mortality, with adjustment for other prognostic factors; hazard ratio [HR], 1.34 and 1.58, respectively; P < 0.001), but not for those in the lower-FUT groups (FUT3-null, FUT-low). As a tumor marker, CA19-9 levels of 100 U/ml or lower after neoadjuvant therapy and normalization of CA19-9 based on FUT group were more sensitive but less specific predictors of evidence for a major pathologic response to therapy (little/no residual tumor) and of early recurrence (within 6 months).

Conclusion

Among patients undergoing pancreatic cancer resection, a CA19-9 tumor marker gene test modestly improved the prognostic performance of CA19-9.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73:17–48. https://doi.org/10.3322/caac.21763.

    Article  PubMed  Google Scholar 

  2. Belfiori G, Crippa S, Francesca A, et al. Long-term survivors after upfront resection for pancreatic ductal adenocarcinoma: an actual 5-year analysis of disease-specific and post-recurrence survival. Ann Surg Oncol. 2021;28:8249–60. https://doi.org/10.1245/s10434-10021-10401-10437.

    Article  PubMed  Google Scholar 

  3. Rangelova E, Wefer A, Persson S, et al. Surgery improves survival after neoadjuvant therapy for borderline and locally advanced pancreatic cancer: a single-institution experience. Ann Surg. 2021;273:579–86. https://doi.org/10.1097/SLA.0000000000003301.

    Article  PubMed  Google Scholar 

  4. Versteijne E, van Dam JL, Suker M, et al. Neoadjuvant chemoradiotherapy versus upfront surgery for resectable and borderline resectable pancreatic cancer: long-term results of the Dutch randomized PREOPANC trial. J Clin Oncol. 2022;40:1220–30. https://doi.org/10.1200/JCO.1221.02233.

    Article  CAS  PubMed  Google Scholar 

  5. Blinn P, Shridhar R, Maramara T, Huston J, Meredith K. Multi-agent neoadjuvant chemotherapy improves response and survival in patients with resectable pancreatic cancer. J Gastrointest Oncol. 2020;11:1078–89. https://doi.org/10.21037/jgo.22019.21012.21003.

    Article  PubMed  PubMed Central  Google Scholar 

  6. van Dam JL, Janssen QP, Besselink MG, et al. Neoadjuvant therapy or upfront surgery for resectable and borderline resectable pancreatic cancer: a meta-analysis of randomised controlled trials. Eur J Cancer. 2022;160:140–9. https://doi.org/10.1016/j.ejca.2021.1010.1023.

    Article  PubMed  Google Scholar 

  7. Ushida Y, Inoue Y, Ito H, et al. High CA19-9 level in resectable pancreatic cancer is a potential indication of neoadjuvant treatment. Pancreatology. 2021;21:130–7. https://doi.org/10.1016/j.pan.2020.1011.1026.

    Article  CAS  PubMed  Google Scholar 

  8. Azizian A, Rühlmann F, Krause T, et al. CA19-9 for detecting recurrence of pancreatic cancer. Sci Rep. 2020;10:1332. https://doi.org/10.1038/s41598-41020-57930-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Humphris JL, Chang DK, Johns AL, et al. The prognostic and predictive value of serum CA19.9 in pancreatic cancer. Ann Oncol. 2012;23:1713–22. https://doi.org/10.1093/annonc/mdr1561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Soloff EV, Al-Hawary MM, Desser TS, Fishman EK, Minter RM, Zins M. Imaging assessment of pancreatic cancer resectability after neoadjuvant therapy: AJR expert panel narrative review. AJR Am J Roentgenol. 2022;218:570–81. https://doi.org/10.2214/AJR.2221.26931.

    Article  PubMed  Google Scholar 

  11. Al Abbas AI, Zenati M, Reiser CJ, et al. Serum CA19-9 response to neoadjuvant therapy predicts tumor size reduction and survival in pancreatic adenocarcinoma. Ann Surg Oncol. 2020;27:2007–14. https://doi.org/10.1245/s10434-10019-08156-10433.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Tsai S, George B, Wittmann D, et al. Importance of normalization of CA19-9 levels following neoadjuvant therapy in patients with localized pancreatic cancer. Ann Surg. 2020;271:740–7. https://doi.org/10.1097/SLA.0000000000003049.

    Article  PubMed  Google Scholar 

  13. Isaji S, Mizuno S, Windsor JA, et al. International consensus on definition and criteria of borderline resectable pancreatic ductal adenocarcinoma 2017. Pancreatology. 2018;18:2–11. https://doi.org/10.1016/j.pan.2017.1011.1011.

    Article  PubMed  Google Scholar 

  14. Doppenberg D, van Dam JL, Han Y, et al. Predictive value of baseline serum carbohydrate antigen 19–9 level on treatment effect of neoadjuvant chemoradiotherapy in patients with resectable and borderline resectable pancreatic cancer in two randomized trials. Br J Surg. 2023;110(10):1374–80.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Tempero MA, Pelzer U, O’Reilly EM, et al. Adjuvant nab-paclitaxel + gemcitabine in resected pancreatic ductal adenocarcinoma: results from a randomized, open-label, phase III trial. J Clin Oncol. 2022;15:01134.

    Google Scholar 

  16. Kawai S, Suzuki K, Nishio K, et al. Smoking and serum CA19-9 levels according to Lewis and secretor genotypes. Int J Cancer. 2008;123:2880–4.

    Article  CAS  PubMed  Google Scholar 

  17. Luo G, Guo M, Jin K, et al. Optimize CA19-9 in detecting pancreatic cancer by Lewis and secretor genotyping. Pancreatology. 2016;16:1057–62.

    Article  CAS  PubMed  Google Scholar 

  18. Wannhoff A, Hov JR, Folseraas T, et al. FUT2 and FUT3 genotype determines CA19-9 cut-off values for detection of cholangiocarcinoma in patients with primary sclerosing cholangitis. J Hepatol. 2013;59:1278–84.

    Article  CAS  PubMed  Google Scholar 

  19. Abe T, Koi C, Kohi S, et al. Gene variants that affect levels of circulating tumor markers increase identification of patients with pancreatic cancer. Clin Gastroenterol Hepatol. 2020;18:1161-1169.e1165. https://doi.org/10.1016/j.cgh.2019.1110.1036.

    Article  CAS  PubMed  Google Scholar 

  20. Narimatsu H, Iwasaki H, Nakayama F, et al. Lewis and secretor gene dosages affect CA19-9 and DU-PAN-2 serum levels in normal individuals and colorectal cancer patients. Cancer Res. 1998;58:512–8.

    CAS  PubMed  Google Scholar 

  21. Dbouk M, Abe T, Koi C, et al. Diagnostic performance of a tumor marker gene test that personalizes the normal reference range of CA19-9. Clin Cancer Res. 2023;29(20):4178–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Washington KBJ BJ, Branton P, Burgart LJ, Carter DK,, Compton CC F. Protocol for the examination of specimens from patients with carcinoma of the pancreas, 2016. Retrieved 25 March 2023 at https://documents.cap.org/protocols/cp-pancreas-exocrine-2016-v3301.pdf.

  23. Janssen BV, Tutucu F, van Roessel S, et al. Amsterdam international consensus meeting: tumor response scoring in the pathology assessment of resected pancreatic cancer after neoadjuvant therapy. Mod Pathol. 2021;34:4–12. https://doi.org/10.1038/s41379-41020-00683-41379.

    Article  PubMed  Google Scholar 

  24. Shindo K, Yu J, Suenaga M, et al. Deleterious germline mutations in patients with apparently sporadic pancreatic adenocarcinoma. J Clin Oncol. 2017;35:3382–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cakir B, Pankow JS, Salomaa V, et al. Distribution of Lewis (FUT3) genotype and allele: frequencies in a biethnic United States population. Ann Hematol. 2002;81:558–65. https://doi.org/10.1007/s00277-00002-00508-x.

    Article  CAS  PubMed  Google Scholar 

  26. Ferrer-Admetlla A, Sikora M, Laayouni H, et al. A natural history of FUT2 polymorphism in humans. Mol Biol Evol. 2009;26:1993–2003. https://doi.org/10.1093/molbev/msp1108.

    Article  CAS  PubMed  Google Scholar 

  27. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, 2022. Vienna, Austria. Retrieved January 23, 2024, from https://www.R-project.org/.

  28. Maeda S, Mederos MA, Chawla A, et al. Pathological treatment response has different prognostic implications for pancreatic cancer patients treated with neoadjuvant chemotherapy or chemoradiotherapy. Surgery. 2022;171:1379–87. https://doi.org/10.1016/j.surg.2021.1310.1015.

    Article  PubMed  Google Scholar 

  29. Seelen LWF, Floortje van Oosten A, Brada LJH, et al. Early recurrence after resection of locally advanced pancreatic cancer following induction therapy: an international multicenter study. Ann Surg. 2022;11:0000000000005666.

    Google Scholar 

  30. Abdelrahman AM, Goenka AH, Alva-Ruiz R, et al. FDG-PET predicts neoadjuvant therapy response and survival in borderline resectable/locally advanced pancreatic adenocarcinoma. J Natl Compr Canc Netw. 2022;20:1023-32.e1023. https://doi.org/10.6004/jnccn.2022.7041.

    Article  PubMed  Google Scholar 

  31. Groot VP, Blair AB, Gemenetzis G, et al. Recurrence after neoadjuvant therapy and resection of borderline resectable and locally advanced pancreatic cancer. Eur J Surg Oncol. 2019;45:1674–83. https://doi.org/10.1016/j.ejso.2019.1604.1007.

    Article  PubMed  Google Scholar 

  32. Takagi T, Nagai M, Nishiwada S, et al. Importance of triple tumor markers as biomarkers in patients with pancreatic ductal adenocarcinoma. Ann Gastroenterol Surg. 2023;7:326–35. https://doi.org/10.1002/ags1003.12629.eCollection12023Mar.

    Article  PubMed  Google Scholar 

  33. Thalji SZ, Kamgar M, George B, et al. CA19-9 response to first-line neoadjuvant FOLFIRINOX and second-line gemcitabine/nab-paclitaxel for patients with operable pancreatic cancer. Ann Surg Oncol. 2023;30(5):3013–21. https://doi.org/10.1245/s10434-022-13055-1.

    Article  PubMed  Google Scholar 

  34. Nitschke C, Markmann B, Walter P, et al. Peripheral and portal venous KRAS ctDNA detection as independent prognostic markers of early tumor recurrence in pancreatic ductal adenocarcinoma. Clin Chem. 2023;69:295–307. https://doi.org/10.1093/clinchem/hvac1214.

    Article  PubMed  Google Scholar 

  35. Kitahata Y, Kawai M, Hirono S, et al. Circulating tumor DNA as a potential prognostic marker in patients with borderline-resectable pancreatic cancer undergoing neoadjuvant chemotherapy followed by pancreatectomy. Ann Surg Oncol. 2022;29:1596–605. https://doi.org/10.1245/s10434-10021-10985-10430.

    Article  PubMed  Google Scholar 

  36. Ecker BL, Tao AJ, Janssen QP, et al. Genomic biomarkers associated with response to induction chemotherapy in patients with localized pancreatic ductal adenocarcinoma. Clin Cancer Res. 2023;29(7):1368–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Seppälä TT, Zimmerman JW, Suri R, et al. Precision medicine in pancreatic cancer: patient-derived organoid pharmacotyping is a predictive biomarker of clinical treatment response. Clin Cancer Res. 2022;28:3296–307. https://doi.org/10.1158/1078-0432.CCR-3221-4165.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Motoi F, Kosuge T, Ueno H, et al. Randomized phase II/III trial of neoadjuvant chemotherapy with gemcitabine and S-1 versus upfront surgery for resectable pancreatic cancer (Prep-02/JSAP05). Jpn J Clin Oncol. 2019;49:190–4. https://doi.org/10.1093/jjco/hyy1190.

    Article  PubMed  Google Scholar 

  39. Liu H, D’Alesio M, AlMasri S, et al. No survival benefit with suboptimal CA19-9 response: defining effective neoadjuvant chemotherapy in resectable or borderline resectable pancreatic cancer. HPB. 2023;25(5):521–32.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants (U01210170, R01CA176828 CA62924), Susan Wojcicki and Dennis Troper, and a Stand Up to Cancer–Lustgarten Foundation Pancreatic Cancer Interception Translational Cancer Research grant (grant no. SU2C-AACR-DT25-17). Stand Up to Cancer is a program of the Entertainment Industry Foundation. SU2C research grants are administered by the American Association for Cancer Research, the scientific partner of SU2C. Michael Goggins is the Sol Goldman Professor of Pancreatic Cancer Research. A Fujimoto Medical System scholarship was awarded to Yohei Ando and the International Research Fund for Subsidy of Kyushu University School of Medicine Alumni.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Goggins MD.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 297 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ando, Y., Dbouk, M., Blackford, A.L. et al. Using a CA19-9 Tumor Marker Gene Test to Assess Outcome After Pancreatic Cancer Surgery. Ann Surg Oncol 31, 2902–2912 (2024). https://doi.org/10.1245/s10434-024-14942-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-024-14942-5

Keywords

Navigation