Skip to main content
Log in

Molecular and Genetic Markers in Appendiceal Mucinous Tumors: A Systematic Review

  • Gastrointestinal Oncology
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Introduction

The role of somatic mutation profiling in the management of appendiceal mucinous tumors (AMTs) is evolving. Using a systematic review, we identified somatic alterations (SAs) that comprise histopathologic types of AMTs and those associated with aggressive clinical phenotypes.

Methods

MEDLINE/PubMed was searched for studies on AMTs including molecular markers or genomic alterations, published between 1990 and 2018. Studies were grouped under low- and high-grade histological type for primary and metastatic tumors.

Results

Twenty-one studies involving 1099 tumors (primary/metastatic) were identified. Seven studies involving 101 primary low-grade AMTs identified KRAS (76.5%) as the predominant SA. Four studies noted GNAS in 45.2% of 42 low-grade appendiceal mucinous neoplasms, and KRAS was identified in 74.4% of 14 studies with 238 low-grade pseudomyxoma peritonei (PMP). GNAS was noted in 56% of 101 tumors and TP53 was noted in only 9.7% of 31 tumors. Primary high-grade tumors demonstrated lower SAs in KRAS (50.4% of 369 tumors) and GNAS (27.8% of 97 tumors), and higher SAs in TP53 (26.0% of 123 tumors). In high-grade PMP, SAs were noted in KRAS (55.0% of 200 tumors), GNAS (35.0% of 60 tumors), and TP53 (26.3% of 19 tumors). No clear association was noted between SAs and survival.

Conclusions

KRAS and GNAS are frequently altered in low-grade AMTs, while TP53 is frequently altered in high-grade AMTs, with no apparent change in expression between primary and metastatic tumors. Although SAs may provide valuable insights into variability in tumor biology, larger studies utilizing clinically annotated genomic databases from multi-institutional consortiums are needed to improve their identification and clinical applicability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Carr NJ, Cecil TD, Mohamed F, et al. A consensus for classification and pathologic reporting of pseudomyxoma peritonei and associated appendiceal neoplasia. Am J Surg Pathol. 2016;40(1):14–26.

    PubMed  Google Scholar 

  2. Liu X, Mody K, de Abreu FB, et al. Molecular profiling of appendiceal epithelial tumors using massively parallel sequencing to identify somatic mutations. Clin Chem. 2014;60(7):1004–11.

    CAS  PubMed  Google Scholar 

  3. Alakus H, Babicky ML, Ghosh P, et al. Genome-wide mutational landscape of mucinous carcinomatosis peritonei of appendiceal origin. Genome Med. 2014;6(5):43.

    PubMed  PubMed Central  Google Scholar 

  4. Ramaswamy V. Pathology of mucinous appendiceal tumors and pseudomyxoma peritonei. Indian J Surg Oncol. 2016;7(154):258–267.

    PubMed  PubMed Central  Google Scholar 

  5. Panarelli NC, Yantiss RK. Mucinous neoplasms of the appendix and peritoneum. Arch Pathol Lab Med. 2011;135(10):1261–1268.

    PubMed  Google Scholar 

  6. Sjoblom T, Jones S, Wood LD, et al. The Consensus coding sequences of human breast and colorectal cancers. Science. 2006;314(5797):268–275.

    PubMed  Google Scholar 

  7. Cancer Genome Atlas. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487(7407):330–337.

    Google Scholar 

  8. Shukla HD. Comprehensive analysis of cancer-proteogenome to identify biomarkers for the early diagnosis and prognosis of cancer. Proteomes. 2017;5(4):28.

    CAS  PubMed Central  Google Scholar 

  9. Noguchi R, Yano H, Gohda Y, et al. Molecular profiles of high-grade and low-grade pseudomyxoma peritonei. Cancer Med. 2015;4(12):1809–1816.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Borazanci E, Millis SZ, Kimbrough J, Doll N, von Hoff D, Ramanathan RK. Potential actionable targets in appendiceal cancer detected by immunohistochemistry, fluorescent in situ hybridization, and mutational analysis. J Gastrointest Oncol. 2017;8(1):164–172.

    PubMed  PubMed Central  Google Scholar 

  11. Ramnani DM, Wistuba II, Behrens C, Gazdar AF, Sobin LH, Albores-Saavedra J. K-ras and p53 mutations in the pathogenesis of classical and goblet cell carcinoids of the appendix. Cancer. 1999;86(1):14–21.

    CAS  PubMed  Google Scholar 

  12. Stancu M, Wu T-T, Wallace C, Houlihan PS, Hamilton SR, Rashid A. Genetic Alterations in goblet cell carcinoids of the vermiform appendix and comparison with gastrointestinal carcinoid tumors. Mod Pathol. 2003;16(12):1189–1198.

    PubMed  Google Scholar 

  13. Dimmler A, Geddert H, Faller G. EGFR, KRAS, BRAF-mutations and microsatellite instability are absent in goblet cell carcinoids of the appendix. Pathol Res Pract. 2014;210(5):274–278.

    CAS  PubMed  Google Scholar 

  14. Hara K, Saito T, Hayashi T, et al. A mutation spectrum that includes GNAS, KRAS and TP53 may be shared by mucinous neoplasms of the appendix. Pathol Res Pract. 2015;211(9):657–664.

    CAS  PubMed  Google Scholar 

  15. Kabbani W, Houlihan PS, Luthra R, Hamilton SR, Rashid A. Mucinous and nonmucinous appendiceal adenocarcinomas: different clinicopathological features but similar genetic alterations. Mod Pathol. 2002;15(6):599–605.

    PubMed  Google Scholar 

  16. Raghav KPS, Shetty AV, Kazmi SMA, et al. Impact of molecular alterations and targeted therapy in appendiceal adenocarcinomas. Oncologist. 2013;18(12):1270–1277.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Zauber P, Berman E, Marotta S, Sabbath-Solitare M, Bishop T. Ki-ras gene mutations are invariably present in low-grade mucinous tumors of the vermiform appendix. Scand J Gastroenterol. 2011;46(7–8):869–874.

    CAS  PubMed  Google Scholar 

  18. Shetty S, Thomas P, Ramanan B, Sharma P, Govindarajan V, Loggie B. Kras mutations and p53 overexpression in pseudomyxoma peritonei: association with phenotype and prognosis. J Surg Res. 2013;180(1):97–103.

    CAS  PubMed  Google Scholar 

  19. Davison JM, Choudry HA, Pingpank JF, et al. Clinicopathologic and molecular analysis of disseminated appendiceal mucinous neoplasms: identification of factors predicting survival and proposed criteria for a three-tiered assessment of tumor grade. Mod Pathol. 2014;27(11):1521–1539.

    PubMed  Google Scholar 

  20. Singhi AD, Davison JM, Choudry HA, et al. GNAS is frequently mutated in both low-grade and high-grade disseminated appendiceal mucinous neoplasms but does not affect survival. Hum Pathol. 2014;45(8):1737–1743.

    CAS  PubMed  Google Scholar 

  21. Pietrantonio F, Perrone F, Mennitto A, et al. Toward the molecular dissection of peritoneal pseudomyxoma. Ann Oncol. 2016;27(11):2097–2103.

    CAS  PubMed  Google Scholar 

  22. Pietrantonio F, Berenato R, Maggi C, et al. GNAS mutations as prognostic biomarker in patients with relapsed peritoneal pseudomyxoma receiving metronomic capecitabine and bevacizumab: a clinical and translational study. J Transl Med. 2016;14(1):125.

    PubMed  PubMed Central  Google Scholar 

  23. Nummela P, Saarinen L, Thiel A, et al. Genomic profile of pseudomyxoma peritonei analyzed using next-generation sequencing and immunohistochemistry. Int J Cancer. 2015;136(5):E282–E289.

    CAS  PubMed  Google Scholar 

  24. Matsubara A, Sekine S, Kushima R, Ogawa R, Taniguchi H, Tsuda H. Frequent GNAS and KRAS mutations in pyloric gland adenoma of the stomach and duodenum. J Pathol. 2013;229(4):579–587.

    CAS  Google Scholar 

  25. Szych C, Staebler A, Connolly DC, et al. Molecular genetic evidence supporting the clonality and appendiceal origin of Pseudomyxoma peritonei in women. Am J Pathol. 1999;154(6):1849–1855.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang C, Guo W, Wu J, Song B. Differential high-resolution melting analysis for the detection of K-ras codons 12 and 13 mutations in pancreatic cancer. Pancreas. 2011;40(8):1283–1288.

    CAS  PubMed  Google Scholar 

  27. Downward J. Targeting RAS Signalling in cancer therapy. Nat Rev Cancer. 2003;3(1):11–22.

    CAS  PubMed  Google Scholar 

  28. Biase D De, Visani M, Baccarini P, et al. Next generation sequencing improves the accuracy of KRAS mutation analysis in endoscopic ultrasound fine needle aspiration pancreatic lesions. PLoS ONE. 2014;9(2):e87651.

    Google Scholar 

  29. Green DE, Jayakrishnan TT, Hwang M, Pappas SG, Gamblin TC, Turaga KK. Immunohistochemistry—microarray analysis of patients with peritoneal metastases of appendiceal or colorectal origin. Front Surg. 2015;1:50.

    PubMed  PubMed Central  Google Scholar 

  30. Idziaszczyk S, Wilson CH, Smith CG, Adams DJ, Cheadle JP. Analysis of the frequency of GNAS codon 201 mutations in advanced colorectal cancer. Cancer Genet Cytogenet. 2010;202(1):67–69.

    CAS  PubMed  Google Scholar 

  31. Wu J, Matthaei H, Maitra A, et al. Recurrent GNAS mutations define an unexpected pathway for pancreatic cyst development. Sci Transl Med. 2011;3(92):92ra66.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Nishikawa G, Sekine S, Ogawa R, et al. Frequent GNAS mutations in low-grade appendiceal mucinous neoplasms. Br J Cancer. 2013;108(4):951–958.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Levine AJ. p53, the cellular gatekeeper for growth and division. Cell. 1997;88:323–331.

    CAS  PubMed  Google Scholar 

  34. Fleming NI, Jorissen RN, Mouradov D, et al. SMAD2, SMAD3 and SMAD4 mutations in colorectal cancer. Cancer Res. 2013;73(2):725–735.

    CAS  PubMed  Google Scholar 

  35. Sabeti A, Bahreyni A, Soleimani A, et al. Biochimie Role of adenomatous polyposis coli (APC) gene mutations in the pathogenesis of colorectal cancer; current status and perspectives. Biochimie. 2019;157:64–71.

    Google Scholar 

  36. Komm M. Primary mucinous adenocarcinoma of the vermiform appendix with high grade microsatellite instability. J Cancer. 2011;2:302–6.

    PubMed  PubMed Central  Google Scholar 

  37. Taggart MW, Galbincea J, Mansfield PF, et al. High-level microsatellite instability in appendiceal carcinomas. Am J Surg Pathol. 2013;37(8):1192–1200. https://doi.org/10.1097/pas.0b013e318282649b

    Article  PubMed  PubMed Central  Google Scholar 

  38. Au TH, Wang K, Stenehjem D, Garrido-Laguna I. Personalized and precision medicine: integrating genomics into treatment decisions in gastrointestinal malignancies. J Gastrointest Oncol. 2017;8(3):387–404.

    PubMed  PubMed Central  Google Scholar 

  39. Shaib WL, Assi R, Shamseddine A, et al. Appendiceal mucinous neoplasms: diagnosis and management. Oncologist. 2017;22(9):1107–1116.

    PubMed  PubMed Central  Google Scholar 

  40. Vigliar E, Malapelle U, Luca C De, Bellevicine C, Troncone G. Challenges and opportunities of next-generation sequencing: a cytopathologist’s perspective. Cytopathology. 2015;26(5):271–283.

    CAS  PubMed  Google Scholar 

  41. Grützmann R, Pilarsky C (eds). Cancer gene profiling, 2nd ed. New York, NY: Humana Press; 2016.

    Google Scholar 

  42. Picelli S. Single-cell RNA-sequencing: the future of genome biology is now. RNA Biol. 2017;14(5):637–650.

    PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by the Sebastian Raclaw Abdominal Cancer Fund at the Medical College of Wisconsin.

Disclosures

Andrew Stein, Erin Strong, T. Clark Gamblin, Callisia Clarke, Susan Tsai, James Thomas, Ben George, and Harveshp Mogal have no disclosures to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harveshp Mogal MD, MS.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stein, A., Strong, E., Clark Gamblin, T. et al. Molecular and Genetic Markers in Appendiceal Mucinous Tumors: A Systematic Review. Ann Surg Oncol 27, 85–97 (2020). https://doi.org/10.1245/s10434-019-07879-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-019-07879-7

Navigation