Skip to main content

Advertisement

Log in

Exploiting Molecular and Immune Biology of Gastric and Gastroesophageal Adenocarcinomas to Discover Novel Therapeutic Targets

  • Gastrointestinal Oncology
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Gastroesophageal carcinomas (GACs) are a significant problem worldwide, and despite many attempts to improve the outcomes of patients with these tumors, little progress has been made over the last several decades. In the past decade, only transtuzumab and ramucirumab, two drugs with marginal clinical benefit, have been approved for the treatment of patients with GACs. After second-line therapy, most treatment options are generally ineffective. Prior studies in this disease have been largely empiric, using unselected patient populations. More recently, detailed somatic genotyping, enrichment of patients based on biomarkers, and pharmacokinetic studies have opened new avenues for developing treatment options in patients with GAC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:E359–86.

    Article  CAS  PubMed  Google Scholar 

  2. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014;513:202–9.

    Article  Google Scholar 

  3. Cristescu R, Lee J, Nebozhyn M, et al. Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nat Med. 2015;21:449–56.

    Article  CAS  PubMed  Google Scholar 

  4. Yao F, Kausalya JP, Sia YY, et al. Recurrent fusion genes in gastric cancer: CLDN18-ARHGAP26 induces loss of epithelial integrity. Cell Rep. 2015;12:272–85.

    Article  CAS  PubMed  Google Scholar 

  5. 5. Zhou J, Hayakawa Y, Wang TC, et al. RhoA mutations identified in diffuse gastric cancer. Cancer Cell. 2014;26:9–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. 6. Kakiuchi M, Nishizawa T, Ueda H, et al. Recurrent gain-of-function mutations of RHOA in diffuse-type gastric carcinoma. Nat Genet. 2014;46:583–7.

    Article  CAS  PubMed  Google Scholar 

  7. Mitchison TJ, Cramer LP. Actin-based cell motility and cell locomotion. Cell. 1996;84:371–9.

    Article  CAS  PubMed  Google Scholar 

  8. Lauffenburger DA, Horwitz AF. Cell migration: a physically integrated molecular process. Cell. 1996;84:359-69.

    Article  CAS  PubMed  Google Scholar 

  9. Olson MF, Paterson HF, Marshall CJ. Signals from Ras and Rho GTPases interact to regulate expression of p21Waf1/Cip1. Nature. 1998;394:295–9.

    Article  CAS  PubMed  Google Scholar 

  10. Wang K, Yuen ST, Xu J, et al. Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer. Nat Genet. 2014;46:573–82.

    Article  CAS  PubMed  Google Scholar 

  11. Jane de Lartigue P. Targeted therapy challenges: more cancer genes discovered, mutational burdens defined. Oncol Live. 2014. http://global.onclive.com/publications/oncology-live/2014/may-2014/targeted-therapy-challenges.

  12. Forghanifard MM, Gholamin M, Farshchian M, et al. Cancer-testis gene expression profiling in esophageal squamous cell carcinoma: identification of specific tumor marker and potential targets for immunotherapy. Cancer Biol Ther. 2011;12:191–7.

    Article  CAS  PubMed  Google Scholar 

  13. Leal MF, Calcagno DQ, Chung J, et al. Deregulated expression of annexin-A2 and galectin-3 is associated with metastasis in gastric cancer patients. Clin Exp Med. 2015;15:415–20.

    Article  CAS  PubMed  Google Scholar 

  14. El-Omar EM, Carrington M, Chow WH, et al. The role of interleukin-1 polymorphisms in the pathogenesis of gastric cancer. Nature. 2001;412:99.

    Article  CAS  PubMed  Google Scholar 

  15. Figueiredo C, Machado JC, Pharoah P, et al. Helicobacter pylori and interleukin 1 genotyping: an opportunity to identify high-risk individuals for gastric carcinoma. J Natl Cancer Inst. 2002;94:1680–7.

    Article  CAS  PubMed  Google Scholar 

  16. Dinarello CA. Biologic basis for interleukin-1 in disease. Blood. 1996;87:2095–147.

    CAS  PubMed  Google Scholar 

  17. Dolcetti L, Marigo I, Mantelli B, et al. Myeloid-derived suppressor cell role in tumor-related inflammation. Cancer Lett. 2008;267:216–25.

    Article  CAS  PubMed  Google Scholar 

  18. Tu S, Bhagat G, Cui G, et al. Overexpression of interleukin-1beta induces gastric inflammation and cancer and mobilizes myeloid-derived suppressor cells in mice. Cancer Cell. 2008;14:408–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bronte-Tinkew DM, Terebiznik M, Franco A, et al. Helicobacter pylori cytotoxin-associated gene A activates the signal transducer and activator of transcription 3 pathway in vitro and in vivo. Cancer Res. 2009;69:632–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Smythies LE, Waites KB, Lindsey JR, et al. Helicobacter pylori-induced mucosal inflammation is Th1 mediated and exacerbated in IL-4, but not IFN-gamma, gene-deficient mice. J Immunol. 2000;165:1022–9.

    Article  CAS  PubMed  Google Scholar 

  21. Berg DJ, Lynch NA, Lynch RG, et al. Rapid development of severe hyperplastic gastritis with gastric epithelial dedifferentiation in Helicobacter felis-infected IL-10(−/−) mice. Am J Pathol. 1998;152:1377–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Eaton KA, Mefford M, Thevenot T. The role of T cell subsets and cytokines in the pathogenesis of Helicobacter pylori gastritis in mice. J Immunol. 2001;166:7456–61.

    Article  CAS  PubMed  Google Scholar 

  23. Sharma P, Allison JP. The future of immune checkpoint therapy. Science. 2015;348:56–61.

    Article  CAS  PubMed  Google Scholar 

  24. Greenwald RJ, Freeman GJ, Sharpe AH. The B7 family revisited. Annu Rev Immunol. 2005;23:515–48.

    Article  PubMed  Google Scholar 

  25. Townsend SE, Allison JP. Tumor rejection after direct costimulation of CD8+ T cells by B7-transfected melanoma cells. Science. 1993;259:368–70.

    Article  CAS  PubMed  Google Scholar 

  26. Walunas TL, Lenschow DJ, Bakker CY, et al. CTLA-4 can function as a negative regulator of T cell activation. Immunity. 1994;1:405–13.

    Article  CAS  PubMed  Google Scholar 

  27. Krummel MF, Allison JP. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med. 1995;182:459–65.

    Article  CAS  PubMed  Google Scholar 

  28. Freeman GJ, Long AJ, Iwai Y, et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med. 2000;192:1027–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dong H, Strome SE, Salomao DR, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med. 2002;8:793–800.

    Article  CAS  PubMed  Google Scholar 

  30. Muro K, Bang Y, Shankaran V, et al. LBA15A phase 1B study of pembrolizumab (PEMBRO; MK-3475) in patients (Pts) with advanced gastric cancer. Ann Oncol. 2014;25:mdu438.15.

    Google Scholar 

  31. Curran MA, Montalvo W, Yagita H, et al. PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc Natl Acad Sci USA. 2010;107:4275–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Duraiswamy J, Kaluza KM, Freeman GJ, et al. Dual blockade of PD-1 and CTLA-4 combined with tumor vaccine effectively restores T-cell rejection function in tumors. Cancer Res. 2013;73:3591–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Callahan MK, Bendell JC, Chan E, et al. Phase I/II, open-label study of nivolumab (anti-PD-1; BMS-936558, ONO-4538) as monotherapy or combined with ipilimumab in advanced or metastatic solid tumors. ASCO Meet Abstr. 2014;32:TPS3114.

  34. Kiyose S, Nagura K, Tao H, et al. Detection of kinase amplifications in gastric cancer archives using fluorescence in situ hybridization. Pathol Int. 2012;62:477–84.

    Article  CAS  PubMed  Google Scholar 

  35. Lee J, Seo JW, Jun HJ, et al. Impact of MET amplification on gastric cancer: possible roles as a novel prognostic marker and a potential therapeutic target. Oncol Rep. 2011;25:1517–24.

    CAS  PubMed  Google Scholar 

  36. Graziano F, Galluccio N, Lorenzini P, et al. Genetic activation of the MET pathway and prognosis of patients with high-risk, radically resected gastric cancer. J Clin Oncol. 2011;29:4789–95.

    Article  CAS  PubMed  Google Scholar 

  37. Lennerz JK, Kwak EL, Ackerman A, et al. MET amplification identifies a small and aggressive subgroup of esophagogastric adenocarcinoma with evidence of responsiveness to crizotinib. J Clin Oncol. 2011;29:4803–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lee HE, Kim MA, Lee HS, et al. MET in gastric carcinomas: comparison between protein expression and gene copy number and impact on clinical outcome. Br J Cancer. 2012;107:325–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Janjigian YY, Tang LH, Coit DG, et al. MET expression and amplification in patients with localized gastric cancer. Cancer Epidemiol Biomark Prev. 2011; 20:1021–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Iveson T, Donehower RC, Davidenko I, et al. Rilotumumab in combination with epirubicin, cisplatin, and capecitabine as first-line treatment for gastric or oesophagogastric junction adenocarcinoma: an open-label, dose de-escalation phase 1b study and a double-blind, randomised phase 2 study. Lancet Oncol. 2014;15:1007–18.

    Article  CAS  PubMed  Google Scholar 

  41. Shah MA, Yong Cho J, Tan Bee Huat I, Tebbutt NC, Yen CJ, Kang A, et al. Randomized phase II study of FOLFOX ± MET inhibitor, onartuzumab (O), in advanced gastroesophageal adenocarcinoma (GEC) [abstract no. 2]. J Clin Oncol. 2015;33(Suppl 3):2.

    Google Scholar 

  42. 42. Kwak EL, LoRusso P, Hamid O, Janku F, Kittaneh M, DVT Catenacci, et al. Clinical activity of AMG 337, an oral MET kinase inhibitor, in adult patients (pts) with MET-amplified gastroesophageal junction (GEJ), gastric (G), or esophageal (E) cancer [abstract no. 1]. J Clin Oncol. 2015;33(Suppl 3):1.

    Google Scholar 

  43. Lieto E, Ferraraccio F, Orditura M, et al. Expression of vascular endothelial growth factor (VEGF) and epidermal growth factor receptor (EGFR) is an independent prognostic indicator of worse outcome in gastric cancer patients. Ann Surg Oncol. 2008;15:69–79.

    Article  PubMed  Google Scholar 

  44. Spratlin JL, Cohen RB, Eadens M, et al. Phase I pharmacologic and biologic study of ramucirumab (IMC-1121B), a fully human immunoglobulin G1 monoclonal antibody targeting the vascular endothelial growth factor receptor-2. J Clin Oncol. 2010;28:780–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fuchs CS, Tomasek J, Yong CJ, et al. Ramucirumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): an international, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet. 2014;383:31–9.

    Article  CAS  PubMed  Google Scholar 

  46. Wilke H, Muro K, Van Cutsem E, et al. Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): a double-blind, randomised phase 3 trial. Lancet Oncol. 2014;15:1224–35.

    Article  CAS  PubMed  Google Scholar 

  47. Tabernero J, Ohtsu A, Muro K, Van Cutsem E, Oh SC. Exposure-response (E-R) relationship of ramucirumab (RAM) from two global, randomized, double-blind, phase 3 studies of patients (Pts) with advanced second-line gastric cancer [abstract no. 121]. J Clin Oncol. 2015;33(Suppl 3):121.

  48. Eli Lilly and Company. A study of ramucirumab (LY3009806) in combination with capecitabine and cisplatin in participants with stomach cancer (RAINFALL) [ClinicalTrials.gov identifier NCT02314117]. US National Institutes of Health, ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT02314117.

  49. Lordick F, Kang YK, Chung HC, et al. Capecitabine and cisplatin with or without cetuximab for patients with previously untreated advanced gastric cancer (EXPAND): a randomised, open-label phase 3 trial. Lancet Oncol. 2013;14:490–9.

    Article  CAS  PubMed  Google Scholar 

  50. Waddell T, Chau I, Cunningham D, et al. Epirubicin, oxaliplatin, and capecitabine with or without panitumumab for patients with previously untreated advanced oesophagogastric cancer (REAL3): a randomised, open-label phase 3 trial. Lancet Oncol. 2013;14:481–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bang YJ, Van Cutsem E, Feyereislova A, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet. 2010;376:687–97.

    Article  CAS  PubMed  Google Scholar 

  52. Hecht JR, Bang Y-J, Qin S, et al. Lapatinib in combination with capecitabine plus oxaliplatin (CapeOx) in HER2-positive advanced or metastatic gastric, esophageal, or gastroesophageal adenocarcinoma (AC): the TRIO-013/LOGiC Trial. ASCO Meet Abstr. 2013;31:LBA4001.

  53. Ohtsu A, Shah MA, Van Cutsem E, et al. Bevacizumab in combination with chemotherapy as first-line therapy in advanced gastric cancer: a randomized, double-blind, placebo-controlled phase III study. J Clin Oncol. 2011;29:3968–76.

    Article  CAS  PubMed  Google Scholar 

  54. Dutton SJ, Ferry DR, Blazeby JM, et al. Gefitinib for oesophageal cancer progressing after chemotherapy (COG): a phase 3, multicentre, double-blind, placebo-controlled randomised trial. Lancet Oncol. 2014;15:894–904.

    Article  CAS  PubMed  Google Scholar 

  55. Satoh T, Xu RH, Chung HC, et al. Lapatinib plus paclitaxel versus paclitaxel alone in the second-line treatment of HER2-amplified advanced gastric cancer in Asian populations: TyTAN–a randomized, phase III study. J Clin Oncol. 2014; 32:2039–49.

    Article  CAS  PubMed  Google Scholar 

  56. Qin S. Phase III study of apatinib in advanced gastric cancer: a randomized, double-blind, placebo-controlled trial. ASCO Meet Abstr. 2014;32:4003.

    Google Scholar 

Download references

Acknowledgments

The authors have received generous grants from the Caporella, Dallas, Sultan, Park, Smith, Frazier, Oaks, Vanstekelenberg, Planjery, and Cantu Families, as well as from the Schecter Private Foundation, Rivercreek Foundation, Kevin Fund, Myer Fund, Dio Fund, and Milrod Fund. Multidisciplinary grants were also received from the University of Texas MD Anderson Cancer Center, Houston, TX, USA. This study was supported in part by National Cancer Institute awards CA138671, CA172741, CA129926 (JAA) and P30CA016672.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaffer A. Ajani MD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elimova, E., Song, S., Shimodaira, Y. et al. Exploiting Molecular and Immune Biology of Gastric and Gastroesophageal Adenocarcinomas to Discover Novel Therapeutic Targets. Ann Surg Oncol 23, 3786–3791 (2016). https://doi.org/10.1245/s10434-016-5428-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-016-5428-4

Keywords

Navigation