Skip to main content

Advertisement

Log in

Inflammatory Adverse Events are Associated with Disease-Free Survival after Vaccine Therapy among Patients with Melanoma

  • Melanomas
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Multipeptide vaccines for melanoma may cause inflammatory adverse events (IAE). We hypothesize that IAE are associated with a higher rate of immune response (IR) to vaccination and improved clinical outcomes.

Methods

Adult patients with resected, high-risk (stage IIB to IV) melanoma were vaccinated with a combination of 12 class I major histocompatibility complex (MHC)-restricted melanoma epitopes, and IAE were recorded. A separate category for hypopigmentation (vitiligo) was also assessed. CD8+ T cell IR was assessed by direct interferon gamma ELISpot analysis. Overall survival and disease-free survival were analyzed by Cox proportional hazard modeling.

Results

Out of 332 patients, 57 developed IAE, the majority of which were dermatologic (minimum Common Terminology Criteria for Adverse Events [CTCAE] grade 3). Most nondermatologic IAE were CTCAE grade 1 and 2. Vitiligo developed in 23 patients (7 %). A total of 174 patients (53 %) developed a CD8+ response. Presence of IAE was significantly associated with development of IR (70 vs. 49 %, p = 0.005) and with disease-free survival (hazard ratio 0.54, p = 0.043). There were no significant associations relating vitiligo or IR alone with clinical outcomes.

Conclusions

IAE are associated with a higher rate of CD8+ T cell response after vaccination therapy for high-risk melanoma. Our findings suggest either that antitumor activity induced by class I MHC-restricted peptide vaccines may depend on immunologic effects beyond simple expansion of CD8+ T cells or that the intrinsic inflammatory response of patients contributes to clinical outcome in melanoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Callahan MK, Wolchok JD. At the bedside: CTLA-4- and PD-1-blocking antibodies in cancer immunotherapy. J Leukoc Biol. 2013;94:41–53.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Slingluff CL Jr, Petroni GR, Olson W, et al. Helper T-cell responses and clinical activity of a melanoma vaccine with multiple peptides from MAGE and melanocytic differentiation antigens. J Clin Oncol. 2008;26:4973–80.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Slingluff CL Jr, Lee S, Zhao F, et al. A randomized phase II trial of multiepitope vaccination with melanoma peptides for cytotoxic T cells and helper T cells for patients with metastatic melanoma (E1602). Clin Cancer Res. 2013;19:4228–38.

    Article  PubMed  CAS  Google Scholar 

  4. Schwartzentruber DJ, Lawson DH, Richards JM, et al. Gp100 peptide vaccine and interleukin-2 in patients with advanced melanoma. N Engl J Med. 2011;364:2119–27.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Woodson EM, Chianese-Bullock KA, Wiernasz CJ, et al. Assessment of the toxicities of systemic low-dose interleukin-2 administered in conjunction with a melanoma peptide vaccine. J Immunother. 2004;27:380–8.

    Article  PubMed  CAS  Google Scholar 

  6. Chianese-Bullock KA, Woodson EM, Tao H, et al. Autoimmune toxicities associated with the administration of antitumor vaccines and low-dose interleukin-2. J Immunother. 2005;28:412–9.

    Article  PubMed  CAS  Google Scholar 

  7. Barth A, Hoon DS, Foshag LJ, et al. Polyvalent melanoma cell vaccine induces delayed-type hypersensitivity and in vitro cellular immune response. Cancer Res. 1994;54:3342–5.

    PubMed  CAS  Google Scholar 

  8. Rowe J, Yerkovich ST, Richmond P, et al. Th2-associated local reactions to the acellular diphtheria–tetanus–pertussis vaccine in 4- to 6-year-old children. Infect Immun. 2005;73:8130–5.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Slingluff CL, Petroni GR, Smolkin ME, et al. Immunogenicity for CD8+ and CD4+ T cells of 2 formulations of an incomplete Freund’s adjuvant for multipeptide melanoma vaccines. J Immunother. 2010;33:630–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Salerno EP, Shea SM, Olson WC, et al. Activation, dysfunction and retention of T cells in vaccine sites after injection of incomplete Freund’s adjuvant, with or without peptide. Cancer Immunol Immunother. 2013;62:1149–59.

    Article  PubMed  CAS  Google Scholar 

  11. Slingluff CL Jr, Petroni GR, Olson WC, et al. Effect of granulocyte/macrophage colony-stimulating factor on circulating CD8+ and CD4+ T-cell responses to a multipeptide melanoma vaccine: outcome of a multicenter randomized trial. Clin Cancer Res. 2009;15:7036–44.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Schaefer JT, Patterson JW, Deacon DH, et al. Dynamic changes in cellular infiltrates with repeated cutaneous vaccination: a histologic and immunophenotypic analysis. J Transl Med. 2010;8:795876–9.

    Article  Google Scholar 

  13. Slingluff CL Jr, Petroni GR, Chianese-Bullock KA, et al. Randomized multicenter trial of the effects of melanoma-associated helper peptides and cyclophosphamide on the immunogenicity of a multipeptide melanoma vaccine. J Clin Oncol. 2011;29:2924–32.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Bystryn JC, Rigel D, Friedman RJ, Kopf A. Prognostic significance of hypopigmentation in malignant melanoma. Arch Dermatol. 1987;123:1053–5.

    Article  PubMed  CAS  Google Scholar 

  15. Rosenberg SA, White DE. Vitiligo in patients with melanoma: normal tissue antigens can be targets for cancer immunotherapy. J Immunother Emphasis Tumor Immunol. 1996;19:81–4.

    Article  PubMed  CAS  Google Scholar 

  16. Hodi FS, O’Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711–23.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Sharma P, Wagner K, Wolchok JD, Allison JP. Novel cancer immunotherapy agents with survival benefit: recent successes and next steps. Nat Rev Cancer. 2011;11:805–12.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Wolchok JD, Neyns B, Linette G, et al. Ipilimumab monotherapy in patients with pretreated advanced melanoma: a randomised, double-blind, multicentre, phase 2, dose-ranging study. Lancet Oncol. 2010;11:155–64.

    Article  PubMed  CAS  Google Scholar 

  19. Weinberg A, Levin MJ. VZV T cell–mediated immunity. Curr Top Microbiol Immunol. 2010;342:341–57.

    PubMed  CAS  Google Scholar 

  20. Hailemichael Y, Dai Z, Jaffarzad N, et al. Persistent antigen at vaccination sites induces tumor-specific CD8+ T cell sequestration, dysfunction and deletion. Nat Med. 2013;19:465–72.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Bloemena E, Gall H, Ransom JH, et al. Delayed-type hypersensitivity reactions to tumor-associated antigens in colon carcinoma patients immunized with an autologous tumor cell/bacillus Calmette-Guérin vaccine. Cancer Res. 1993;53:456–9.

    PubMed  CAS  Google Scholar 

  22. Disis ML, Schiffman K, Gooley TA, McNeel DG, Rinn K, Knutson KL. Delayed-type hypersensitivity response is a predictor of peripheral blood T-cell immunity after HER-2/neu peptide immunization. Clin Cancer Res. 2000;6:1347–50.

    PubMed  CAS  Google Scholar 

  23. van Duikeren S, Fransen MF, Redeker A, et al. Vaccine-induced effector-memory CD8+ T cell responses predict therapeutic efficacy against tumors. J Immunol. 2012;189:3397–403.

    Article  PubMed  Google Scholar 

  24. Slingluff CL Jr, Lee S, Zhao F, et al. A randomized phase II trial of multiepitope vaccination with melanoma peptides for cytotoxic T cells and helper T cells for patients with metastatic melanoma (E1602). Clin Cancer Res. 2013;19(15):4228–4238.

    Article  PubMed  CAS  Google Scholar 

  25. van Duikeren S, Arens R. Predicting the efficacy of cancer vaccines by evaluating T-cell responses. Oncoimmunology. 2013;2:e22616.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Cohen JI, Hohman P, Fulton R, et al. Kinetics of serum cytokines after primary or repeat vaccination with the smallpox vaccine. J Infect Dis. 2010;201:1183–91.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Rock MT, Yoder SM, Talbot TR, Edwards KM, Crowe JE Jr. Adverse events after smallpox immunizations are associated with alterations in systemic cytokine levels. J Infect Dis. 2004;189:1401–10.

    Article  PubMed  CAS  Google Scholar 

  28. Walsh LJ, Trinchieri G, Waldorf HA, Whitaker D, Murphy GF. Human dermal mast cells contain and release tumor necrosis factor alpha, which induces endothelial leukocyte adhesion molecule 1. Proc Natl Acad Sci U S A. 1991;88:4220–4.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Lienard D, Ewalenko P, Delmotte JJ, Renard N, Lejeune FJ. High-dose recombinant tumor necrosis factor alpha in combination with interferon gamma and melphalan in isolation perfusion of the limbs for melanoma and sarcoma. J Clin Oncol. 1992;10:52–60.

    PubMed  CAS  Google Scholar 

  30. Lienard D, Eggermont AM, Schraffordt Koops H, et al. Isolated perfusion of the limb with high-dose tumour necrosis factor-alpha (TNF-alpha), interferon-gamma (IFN-gamma) and melphalan for melanoma stage III. results of a multi-centre pilot study. Melanoma Res. 1994;4(Suppl 1):21–6.

  31. Garcia-Pineres A, Hildesheim A, Dodd L, et al. Cytokine and chemokine profiles following vaccination with human papillomavirus type 16 L1 virus-like particles. Clin Vaccine Immunol. 2007;14:984–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Karagiannis SN, Josephs DH, Karagiannis P, et al. Recombinant IgE antibodies for passive immunotherapy of solid tumours: from concept towards clinical application. Cancer Immunol Immunother. 2012;61:1547–64.

    Article  PubMed  CAS  Google Scholar 

  33. Vercelli D, Jabara HH, Arai K, Geha RS. Induction of human IgE synthesis requires interleukin 4 and T/B cell interactions involving the T cell receptor/CD3 complex and MHC class II antigens. J Exp Med. 1989;169:1295–307.

    Article  PubMed  CAS  Google Scholar 

  34. Atzpodien J, Neuber K, Kamanabrou D, et al. Combination chemotherapy with or without s.c. IL-2 and IFN-alpha: results of a prospectively randomized trial of the cooperative advanced malignant melanoma chemoimmunotherapy group (ACIMM). Br J Cancer. 2002;86:179–84.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Slingluff CL Jr, Petroni GR, Yamshchikov GV, et al. Immunologic and clinical outcomes of vaccination with a multiepitope melanoma peptide vaccine plus low-dose interleukin-2 administered either concurrently or on a delayed schedule. J Clin Oncol. 2004;22:4474–85.

    Article  PubMed  CAS  Google Scholar 

  36. Weiss GR, Grosh WW, Chianese-Bullock KA, et al. Molecular insights on the peripheral and intratumoral effects of systemic high-dose rIL-2 (aldesleukin) administration for the treatment of metastatic melanoma. Clin Cancer Res. 2011;17:7440–50.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Elias EG, Zapas JL, McCarron EC, Beam SL, Hasskamp JH, Culpepper WJ. Sequential administration of GM-CSF (sargramostim) and IL-2 +/− autologous vaccine as adjuvant therapy in cutaneous melanoma: an interim report of a phase II clinical trial. Cancer Biother Radiopharm. 2008;23:285–91.

    Article  PubMed  CAS  Google Scholar 

  38. Atkins MB, Lotze MT, Dutcher JP, et al. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol. 1999;17:2105–16.

    PubMed  CAS  Google Scholar 

  39. Zogakis TG, Essner R, Wang HJ, et al. Melanoma recurrence patterns after negative sentinel lymphadenectomy. Arch Surg. 2005;140:865–71.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

Funded in part by NIH/NCI grants NIH R01 CA057653 and CA118386, and NIH R21 CA103528 (to CLS), and NIH T32 CA163177 (to YH). Support was also provided by the University of Virginia Cancer Center Support Grant (NIH/NCI P30 CA44579, Clinical Trials Office, Tissue Procurement Facility, and Biomolecular Core Facility); and the UVA General Clinical Research Center (NIH M01 RR00847). Peptides used in the vaccines were prepared with philanthropic support from the Commonwealth Foundation for Cancer Research and Alice and Bill Goodwin. Additional philanthropic support was provided by Frank and Jane Batten, the James and Rebecca Craig Foundation, George S. Suddock, Richard and Sherry Sharp, and the Patients and Friends Research Fund of the University of Virginia Cancer Center.

Disclosure

CLS is an inventor for peptides included in these trials; the patents are held by the University of Virginia Licensing and Ventures Group. The other authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinin Hu MD.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 156 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Smolkin, M.E., White, E.J. et al. Inflammatory Adverse Events are Associated with Disease-Free Survival after Vaccine Therapy among Patients with Melanoma. Ann Surg Oncol 21, 3978–3984 (2014). https://doi.org/10.1245/s10434-014-3794-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-014-3794-3

Keywords

Navigation