Skip to main content

Advertisement

Log in

Induction of the Mitochondria Apoptosis Pathway by Phytohemagglutinin Erythroagglutinating in Human Lung Cancer Cells

  • Thoracic Oncology
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Deregulation of apoptosis will influence the balance of cell proliferation and cell death, resulting in various fatal diseases that can include cancer. In prior research reports related to cancer therapy, phytohemagglutinin, a lectin extracted from red kidney beans, demonstrated the ability to inhibit the growth of human cancer cells. However, one of its isoforms, erythroagglutinating, has yet to be evaluated on its anticancer effects.

Methods

PHA-E was used to induce apoptosis of A-549 lung cancer cells and the possible signal transduction pathway was elucidated, as measured by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, G6PD release assay, flow cytometry, and Western blot analysis.

Results

PHA-E treatment caused a dose-dependent increase of cell growth inhibition and cytotoxicity on A-549 cells. In annexin V/propidium iodide [i.e., PI] and TUNEL (terminal deoxynucleotidyl transferase dUTP nick-end labeling)/PI assay, we found that the rate of apoptotic cells was raised as the concentration of PHA-E increased. Treatment of A-549 cells with PHA-E resulted in enhancing the release of cytochrome c, which thus activated an increase in caspase 9 and caspase 3, the upregulation of Bax and Bad, the downregulation of Bcl-2 and phosphorylated Bad, and finally the inhibition of the epidermal growth factor receptor and its downstream signal pathway PI3K/Akt and MEK/ERK.

Conclusions

PHA-E can induce growth inhibition and cytotoxicity of lung cancer cells, which is mediated through an activation of the mitochondria apoptosis pathway. These results suggest that PHA-E can be developed into a new therapeutic treatment that can be applied as an effective anti–lung cancer drug in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2009. CA Cancer J Clin. 2009;59:225–49.

    Article  PubMed  Google Scholar 

  2. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55:74–108.

    Article  PubMed  Google Scholar 

  3. Brambilla E, Travis WD, Colby TV, Corrin B, Shimosato Y. The new World Health Organization classification of lung tumours. Eur Respir J. 2001;18:1059–68.

    Article  PubMed  CAS  Google Scholar 

  4. Hu W, Kavanagh JJ. Anticancer therapy targeting the apoptotic pathway. Lancet Oncol. 2003;4:721–9.

    Article  PubMed  CAS  Google Scholar 

  5. Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26:239–57.

    Article  PubMed  CAS  Google Scholar 

  6. Lockshin RA, Zakeri Z. Programmed cell death and apoptosis: origins of the theory. Nat Rev Mol Cell Biol. 2001;2:545–50.

    Article  PubMed  CAS  Google Scholar 

  7. Green DR, Reed JC. Mitochondria and apoptosis. Science. 1998;281:1309–12.

    Article  PubMed  CAS  Google Scholar 

  8. Budihardjo I, Oliver H, Lutter M, Luo X, Wang X. Biochemical pathways of caspase activation during apoptosis. Annu Rev Cell Dev Biol. 1999;15:269–90.

    Article  PubMed  CAS  Google Scholar 

  9. Strasser A, O’Connor L, Dixit VM. Apoptosis signaling. Annu Rev Biochem. 2000;69:217–45.

    Article  PubMed  CAS  Google Scholar 

  10. Desagher S, Martinou JC. Mitochondria as the central control point of apoptosis. Trends Cell Biol. 2000;10:369–77.

    Article  PubMed  CAS  Google Scholar 

  11. Ozören N, El-Deiry WS. Cell surface death receptor signaling in normal and cancer cells. Semin Cancer Biol. 2003;13:135–47.

    Article  PubMed  Google Scholar 

  12. Adams JM, Cory S. The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene. 2007;26:1324–37.

    Article  PubMed  CAS  Google Scholar 

  13. Youle RJ, Strasser A. The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol. 2008;9:47–59.

    Article  PubMed  CAS  Google Scholar 

  14. Zornig M, Hueber A, Baum W, Evan G. Apoptosis regulators and their role in tumorigenesis. Biochim Biophys Acta. 2001;1551:F1–37.

    PubMed  CAS  Google Scholar 

  15. Danial NN, Korsmeyer SJ. Cell death: critical control points. Cell. 2004;116:205–19.

    Article  PubMed  CAS  Google Scholar 

  16. Fesik SW. Promoting apoptosis as a strategy for cancer drug discovery. Nat Rev Cancer. 2005;5:876–85.

    Article  PubMed  CAS  Google Scholar 

  17. Khan N, Afaq F, Mukhtar H. Apoptosis by dietary factors: the suicide solution for delaying cancer growth. Carcinogenesis. 2007;28:233–9.

    Article  PubMed  CAS  Google Scholar 

  18. De Mejía EG, Prisecaru VI. Lectins as bioactive plant proteins: a potential in cancer treatment. Crit Rev Food Sci Nutr. 2005;45:425–45.

    Article  PubMed  Google Scholar 

  19. Leavitt RD, Feldsted RL, Bachur NR. Biological and biochemical properties of Phaseolus vulgaris. isolectins. J Biol Chem. 1977;252:2961–6.

    PubMed  CAS  Google Scholar 

  20. Rüdiger H, Gabius HJ. Plant lectins: occurrence, biochemistry, functions and applications. Glycoconj J. 2001;18:589–613.

    Article  PubMed  Google Scholar 

  21. Zhang JS, Shi J, Ilic S, Xue SJ, Kakuda Y. Biological properties and characterization of lectin from red kidney bean (Phaseolus vulgaris.). Food Rev Int. 2009;25:12–27.

    Article  Google Scholar 

  22. O’Flynn K, Krensky AM, Beverley PC, Burakoff SJ, Linch DC. Phytohaemagglutinin activation of T cells through the sheep red blood cell receptor. Nature. 1985;313:686–7.

    Article  PubMed  Google Scholar 

  23. Yashwantrai NV, Flossie WS. The biochemistry of AIDS. Annu Rev Biochem. 1991;60:577–630.

    Article  Google Scholar 

  24. Ye XY, Ng TB, Tsang WK, Wang J. Isolation of a homodimeric lectin with antifungal and antiviral activities from red kidney bean (Phaseolus vulgaris.) seeds. J Protein Chem. 2001;20:367–75.

    Article  PubMed  CAS  Google Scholar 

  25. Kiss R, Camby I, Duckworth C, et al. In vitro influence of Phaseolus vulgaris, Griffonia simplicifolia,. concanavalin A, wheat germ, and peanut agglutinins on HCT-15, LoVo, and SW837 human colorectal cancer cell growth. Gut. 1997;40:253–61.

    PubMed  CAS  Google Scholar 

  26. De Mejía EG, Prisecaru VI. Lectins as bioactive plant proteins: a potential in cancer treatment. Crit Rev Food Sci Nutr. 2005;45:425–45.

    Article  PubMed  Google Scholar 

  27. Wimer BM. Therapeutic activities of PHA-L4, the mitogenic isolectin of phytohemagglutinin. Mol Biother. 1990;2:74–90.

    PubMed  CAS  Google Scholar 

  28. Nyati MK, Morgan MA, Feng FY, Lawrence TS. Integration of EGFR inhibitors with radiochemotherapy. Nat Rev Cancer. 2006;6:876–85.

    Article  PubMed  CAS  Google Scholar 

  29. Hickman JA. Apoptosis induced by anticancer drugs. Cancer Metastasis Rev. 1992;11:121–39.

    Article  PubMed  CAS  Google Scholar 

  30. Handerson T, Camp R, Harigopal M, Rimm D, Pawelek J. Beta1,6-branched oligosaccharides are increased in lymph node metastases and predict poor outcome in breast carcinoma. Clin Cancer Res. 2005;11:2969–73.

    Article  PubMed  CAS  Google Scholar 

  31. Rebbaa A, Chou PM, Vucic I, et al. Expression of bisecting GlcNAc in pediatric brain tumors and its association with tumor cell response to vinblastine. Clin Cancer Res. 1999;5:3661–8.

    PubMed  CAS  Google Scholar 

  32. Von Ahsen O, Waterhouse NJ, Kuwana T, Newmeyer DD, Green DR. The “harmless” release of cytochrome c.. Cell Death Differ. 2000;7:1192–9.

    Article  Google Scholar 

  33. Sharpe JC, Arnoult D, Youle RJ. Control of mitochondrial permeability by Bcl-2 family members. Biochim Biophys Acta. 2004;1644:107–13.

    Article  PubMed  CAS  Google Scholar 

  34. Cory S, Adams JM. The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer. 2002;2:647–56.

    Article  PubMed  CAS  Google Scholar 

  35. Fletcher JI, Meusburger S, Hawkins CJ, et al. Apoptosis is triggered when prosurvival Bcl-2 proteins cannot restrain Bax. Proc Natl Acad Sci USA. 2008;105:18081–7.

    Article  PubMed  CAS  Google Scholar 

  36. Zha J, Harada H, Yang E, Jockel J, Korsmeyer SJ. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-X(L). Cell. 1996;87:619–28.

    Article  PubMed  CAS  Google Scholar 

  37. Chen L, Willis SN, Wei A, et al. Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol Cell. 2005;17:393–403.

    Article  PubMed  CAS  Google Scholar 

  38. Willis SN, Fletcher JI, Kaufmann T, et al. Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science. 2007;315:856–9.

    Article  PubMed  CAS  Google Scholar 

  39. Datta SR, Dudek H, Tao X, et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell. 1997;91:231–41.

    Article  PubMed  CAS  Google Scholar 

  40. Datta SR, Ranger AM, Lin MZ, et al. Survival factor–mediated BAD phosphorylation raises the mitochondrial threshold for apoptosis. Dev Cell. 2002;3:631–43.

    Article  PubMed  CAS  Google Scholar 

  41. Wieduwilt MJ, Moasser MM. The epidermal growth factor receptor family: biology driving targeted therapeutics. Cell Mol Life Sci. 2008;65:1566–84.

    Article  PubMed  CAS  Google Scholar 

  42. Scaltriti M, Baselga J. The epidermal growth factor receptor pathway: a model for targeted therapy. Clin Cancer Res. 2006;12:5268–72.

    Article  PubMed  CAS  Google Scholar 

  43. Lacroix L, Besse B, Bidart JM, Bosq J. KRAS status versus EGFR status in lung cancer therapy. Bull Cancer. 2009;96:S75–83.

    PubMed  CAS  Google Scholar 

  44. Mukohara T, Kudoh S, Yamauchi S, et al. Expression of epidermal growth factor receptor (EGFR) and downstream-activated peptides in surgically excised non-small-cell lung cancer (NSCLC). Lung Cancer. 2003;41:123–30.

    Article  PubMed  Google Scholar 

  45. Tanno S, Ohsaki Y, Nakanishi K, Toyoshima E, Kikuchi K. Small cell lung cancer cells express EGFR and tyrosine phosphorylation of EGFR is inhibited by gefitinib (“Iressa,” ZD1839). Oncol Rep. 2004;12:1053–7.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank the China Medical University, for financially supporting this research under contract CMU97-230.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Hsu Yao PhD.

Additional information

C.-H. Yao, Y.-S. Chen and G.-C. Dong contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuo, WT., Ho, YJ., Kuo, SM. et al. Induction of the Mitochondria Apoptosis Pathway by Phytohemagglutinin Erythroagglutinating in Human Lung Cancer Cells. Ann Surg Oncol 18, 848–856 (2011). https://doi.org/10.1245/s10434-010-1351-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-010-1351-2

Keywords

Navigation