Skip to main content

Advertisement

Log in

EMAP II-Based Antiangiogenic-Antiendothelial In Vivo Combination Therapy of Pancreatic Cancer

  • Translational Research and Biomarkers
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Pancreatic ductal adenocarcinoma (PDAC) frequently resists conventional cytotoxic therapy. The antitumor effects of endothelial monocyte-activating polypeptide II (EMAP) have been attributed to its antiendothelial and antiangiogenic activities. We tested the hypothesis that a combination of EMAP with bevacizumab (Bev) and gemcitabine (Gem) targets different pathways of PDAC progression and represents more effective treatment.

Methods

Proliferation of PDAC and endothelial cell lines was evaluated in vitro. In vivo tumor growth and survival PDAC xenograft experiments were performed with EMAP, Bev, and Gem, either alone or in combination. Intratumoral microvessel density and proliferative activity were analyzed by immunostaining with PECAM-1 and proliferating cell nuclear antigen antibodies, and apoptotic activity was measured by the TUNEL (terminal deoxynucleotidyl transferase dUTP nick-end labeling) procedure.

Results

Compared with controls, net reduction in tumor growth in EMAP, Bev, Gem, EMAP + Bev, EMAP + Gem, Bev + Gem, and EMAP + Bev + Gem groups was 58, 40, 40, 67, 68, 69, and 96%, respectively. Addition of EMAP to the Bev + Gem group statistically significantly improved survival at a median of >8 days while inducing long-term survival in some animals after maintenance therapy. Combination treatment of EMAP with Bev and Gem reduced proliferation of endothelial but not of PDAC cells. Addition of EMAP to Bev and Gem statistically significantly decreased proliferative activity while maintaining a comparable rate of microvessel density and apoptosis.

Conclusions

Addition of antiendothelial EMAP to a Bev and Gem regimen improves antitumor effects in a xenograft model of PDAC. This multitargeting strategy to prevent PDAC progression shows therapeutic promise and may overcome limitations by combinations of Gem with anti-vascular endothelial growth factor agents alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E, et al. Cancer statistics 2007. CA Cancer J Clin. 2007;57:43–66.

    Article  PubMed  Google Scholar 

  2. Duffy JP, Eibl G, Reber HA, Hines OJ. Influence of hypoxia and neoangiogenesis on the growth of pancreatic cancer. Mol Cancer. 2003;2:12.

    Article  PubMed  Google Scholar 

  3. Cohen SJ, Pinover WH, Watson JC, Meropol NJ. Pancreatic cancer. Curr Treat Options Oncol. 2000;1:375–86.

    Article  CAS  PubMed  Google Scholar 

  4. MacKenzie MJ. Molecular therapy in pancreatic adenocarcinoma. Lancet Oncol. 2004;5:541–9.

    Article  CAS  PubMed  Google Scholar 

  5. Schneider G, Siveke JT, Eckel F, Schmid RM. Pancreatic cancer: basic and clinical aspects. Gastroenterology. 2005;128:1606–25.

    Article  CAS  PubMed  Google Scholar 

  6. Reddy LH. Drug delivery to tumours: recent strategies. J Pharm Pharmacol. 2005;57:1231–42.

    Article  CAS  PubMed  Google Scholar 

  7. Burris HA 3rd, Moore MJ, Andersen, J, et al. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol. 1997;15:2403–13.

    CAS  PubMed  Google Scholar 

  8. Bramhall SR, Rosemurgy A, Brown PD, Bowry C, Buckels JA. Marimastat as first-line therapy for patients with unresectable pancreatic cancer: a randomized trial. J Clin Oncol. 2001;19:3447–55.

    CAS  PubMed  Google Scholar 

  9. Berlin JD, Catalano P, Thomas JP, et al. Phase III study of gemcitabine in combination with fluorouracil versus gemcitabine alone in patients with advanced pancreatic carcinoma: Eastern Cooperative Oncology Group Trial E2297. J Clin Oncol. 2002;20:3270–5.

    Article  CAS  PubMed  Google Scholar 

  10. Rocha Lima CM, Green MR, Rotche R, et al. Irinotecan plus gemcitabine results in no survival advantage compared with gemcitabine monotherapy in patients with locally advanced or metastatic pancreatic cancer despite increased tumor response rate. J Clin Oncol. 2004;22:3776–83.

    Article  CAS  PubMed  Google Scholar 

  11. Reni M, Panucci MG, Passoni P, et al. Salvage chemotherapy with mitomycin, docetaxel, and irinotecan (MDI regimen) in metastatic pancreatic adenocarcinoma: a phase I and II trial. Cancer Invest. 2004;22:688–96.

    Article  CAS  PubMed  Google Scholar 

  12. Van Cutsem E, van de Velde H, Karasek P, et al. Phase III trial of gemcitabine plus tipifarnib compared with gemcitabine plus placebo in advanced pancreatic cancer. J Clin Oncol. 2004;22:1430–8.

    Article  PubMed  Google Scholar 

  13. Reni M, Cordio S, Milandri C, et al. Gemcitabine versus cisplatin, epirubicin, fluorouracil, and gemcitabine in advanced pancreatic cancer: a randomised controlled multicentre phase III trial. Lancet Oncol. 2005;6:369–76.

    Article  CAS  PubMed  Google Scholar 

  14. Louvet C, Labianca R, Hammel P, et al. Gemcitabine in combination with oxaliplatin compared with gemcitabine alone in locally advanced or metastatic pancreatic cancer: results of a GERCOR and GISCAD phase III trial. J Clin Oncol. 2005;23:3509–16.

    Article  CAS  PubMed  Google Scholar 

  15. Konno H, Tanaka T, Matsuda I, et al. Comparison of the inhibitory effect of the angiogenesis inhibitor, TNP-470, and mitomycin C on the growth and liver metastasis of human colon cancer. Int J Cancer. 1995;61:268–71.

    Article  CAS  PubMed  Google Scholar 

  16. Satoh H, Ishikawa H, Fujimoto M, et al. Angiocytotoxic therapy in human non-small cell lung cancer cell lines—advantage of combined effects of TNP-470 and SN-38. Acta Oncol. 1998;37:85–90.

    Article  CAS  PubMed  Google Scholar 

  17. Korc M. Pathways for aberrant angiogenesis in pancreatic cancer. Mol Cancer. 2003;2:8.

    Google Scholar 

  18. Luo J, Guo P, Matsuda K, et al. Pancreatic cancer cell-derived vascular endothelial growth factor is biologically active in vitro and enhances tumorigenicity in vivo. Int J Cancer. 2001;92:361–9.

    Article  CAS  PubMed  Google Scholar 

  19. Itakura J, Ishiwata T, Shen B, Kornmann M, Korc M. Concomitant over-expression of vascular endothelial growth factor and its receptors in pancreatic cancer. Int J Cancer. 2000;85:27–34.

    Article  CAS  PubMed  Google Scholar 

  20. Seo Y, Baba H, Fukuda T, Takashima M, Sugimachi K. High expression of vascular endothelial growth factor is associated with liver metastasis and a poor prognosis for patients with ductal pancreatic adenocarcinoma. Cancer. 2000;88:2239–45.

    Article  CAS  PubMed  Google Scholar 

  21. Hoshida T, Sunamura M, Duda DG, et al. Gene therapy for pancreatic cancer using an adenovirus vector encoding soluble flt-1 vascular endothelial growth factor receptor. Pancreas. 2002;25:111–21.

    Article  PubMed  Google Scholar 

  22. Ogawa T, Takayama K, Takakura N, Kitano S, Ueno H. Anti-tumor angiogenesis therapy using soluble receptors: enhanced inhibition of tumor growth when soluble fibroblast growth factor receptor-1 is used with soluble vascular endothelial growth factor receptor. Cancer Gene Ther. 2002;9:633–40.

    Article  CAS  PubMed  Google Scholar 

  23. Kindler H, Niedzwiecki D, Hollis D, et al. A double-blind, placebo-controlled, randomized phase III trial of gemcitabine (G) plus bevacizumab versus gemcitabine plus placebo (P) in patients (pts) with advanced pancreatic cancer (PC): a preliminary analysis of Cancer and Leukemia Group B (CALGB). J Clin Oncol. 2007;25(Suppl 18S):4508.

    Google Scholar 

  24. Astsaturov N, Meropol N, Alpaugh R, et al. A randomized phase II and coagulation study of bevacizumab alone or with docetaxel in patients with previously treated metastatic pancreatic adenocarcinoma. J Clin Oncol. 2007;25(Suppl 18S):4556.

    Google Scholar 

  25. Ko AH, Dito E, Schillinger B, et al. A phase II study evaluating bevacizumab in combination with fixed-dose rate gemcitabine and low-dose cisplatin for metastatic pancreatic cancer: is an anti-VEGF strategy still applicable? Invest New Drugs. 2008;26:463–71.

    Article  CAS  PubMed  Google Scholar 

  26. Moore MJ, Goldstein D, Hamm J, et al. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol. 2007;25:1960–6.

    Article  CAS  PubMed  Google Scholar 

  27. Bruns CJ, Harbison MT, Davis DW, et al. Epidermal growth factor receptor blockade with C225 plus gemcitabine results in regression of human pancreatic carcinoma growing orthotopically in nude mice by antiangiogenic mechanisms. Clin Cancer Res. 2000;6:1936–48.

    CAS  PubMed  Google Scholar 

  28. Hayes AJ, Li LY, Lippman ME. Anti-vascular therapy: a new approach to cancer treatment. West J Med. 2000;172:39–42.

    Article  CAS  PubMed  Google Scholar 

  29. Kao J, Ryan J, Brett G, et al. Endothelial monocyte-activating polypeptide II. A novel tumor-derived polypeptide that activates host-response mechanisms. J Biol Chem. 1992;267:20239–47.

    CAS  PubMed  Google Scholar 

  30. Schwarz MA, Kandel J, Brett J, et al. Endothelial-monocyte activating polypeptide II, a novel antitumor cytokine that suppresses primary and metastatic tumor growth and induces apoptosis in growing endothelial cells. J Exp Med. 1999;190:341–54.

    Article  CAS  PubMed  Google Scholar 

  31. Berger AC, Alexander HR, Tang G, et al. Endothelial monocyte activating polypeptide II induces endothelial cell apoptosis and may inhibit tumor angiogenesis. Microvasc Res. 2000;60:70–80.

    Article  CAS  PubMed  Google Scholar 

  32. Schwarz RE, Schwarz MA. In vivo therapy of local tumor progression by targeting vascular endothelium with EMAP-II. J Surg Res. 2004;120:64–72.

    Article  CAS  PubMed  Google Scholar 

  33. Schwarz MA, Zheng H, Liu J, Corbett S, Schwarz RE. Endothelial-monocyte activating polypeptide II alters fibronectin based endothelial cell adhesion and matrix assembly via alpha5 beta1 integrin. Exp Cell Res. 2005;311:229–39.

    Article  CAS  PubMed  Google Scholar 

  34. Awasthi N, Schwarz MA, Verma V, Cappiello C, Schwarz RE. Endothelial monocyte activating polypeptide II interferes with VEGF-induced proangiogenic signaling. Lab Invest. 2009;89:38–46.

    Article  CAS  PubMed  Google Scholar 

  35. Schwarz RE, Konduri S, Awasthi N, Cafasso D, Schwarz MA. An antiendothelial combination therapy strategy to increase survival in experimental pancreatic cancer. Surgery. 2009;146:241–9.

    Article  PubMed  Google Scholar 

  36. Schwarz MA, Zhang F, Gebb S, Starnes V, Warburton D. Endothelial monocyte activating polypeptide II inhibits lung neovascularization and airway epithelial morphogenesis. Mech Dev. 2000;95:123–32.

    Article  CAS  PubMed  Google Scholar 

  37. Bold RJ, Virudachalam S, McConkey DJ. Chemosensitization of pancreatic cancer by inhibition of the 26S proteasome. J Surg Res. 2001;100:11–7.

    Article  CAS  PubMed  Google Scholar 

  38. Kolinsky K, Shen BQ, Zhang YE, et al. In vivo activity of novel capecitabine regimens alone and with bevacizumab and oxaliplatin in colorectal cancer xenograft models. Mol Cancer Ther. 2009;8:75–82.

    Article  CAS  PubMed  Google Scholar 

  39. Schwarz RE, McCarty TM, Peralta EA, Diamond DJ, Ellenhorn JD. An orthotopic in vivo model of human pancreatic cancer. Surgery. 1999;126:562–7.

    CAS  PubMed  Google Scholar 

  40. Kindler HL, Friberg G, Singh DA, et al. Phase II trial of bevacizumab plus gemcitabine in patients with advanced pancreatic cancer. J Clin Oncol. 2005;23:8033–40.

    Article  CAS  PubMed  Google Scholar 

  41. Reznikov AG, Chaykovskaya LV, Polyakova LI, Kornelyuk AI. Antitumor effect of endothelial monocyte-activating polypeptide-II on human prostate adenocarcinoma in mouse xenograft model. Exp Oncol. 2007;29:267–71.

    CAS  PubMed  Google Scholar 

  42. Crippa L, Gasparri A, Sacchi A, et al. Synergistic damage of tumor vessels with ultra low-dose endothelial-monocyte activating polypeptide-II and neovasculature-targeted tumor necrosis factor-alpha. Cancer Res. 2008;68:1154–61.

    Article  CAS  PubMed  Google Scholar 

  43. Schwarz R, Konduri S, Caldwell L, Corbett S, Schwarz M. Inhibition of fibronectin-dependent pancreatic cancer proliferation through EMAP II therapy. J Surg Res. 2007;137:193.

    Article  Google Scholar 

  44. Tandle AT, Mazzanti C, Alexander HR, Roberts DD, Libutti SK. Endothelial monocyte activating polypeptide-II induced gene expression changes in endothelial cells. Cytokine. 2005;30:347–58.

    Article  CAS  PubMed  Google Scholar 

  45. Jain RK, Tong RT, Munn LL. Effect of vascular normalization by antiangiogenic therapy on interstitial hypertension, peritumor edema, and lymphatic metastasis: insights from a mathematical model. Cancer Res. 2007;67:2729–35.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roderich E. Schwarz MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwarz, R.E., Awasthi, N., Konduri, S. et al. EMAP II-Based Antiangiogenic-Antiendothelial In Vivo Combination Therapy of Pancreatic Cancer. Ann Surg Oncol 17, 1442–1452 (2010). https://doi.org/10.1245/s10434-009-0879-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-009-0879-5

Keywords

Navigation