Skip to main content

Advertisement

Log in

Nuclear Translocation of β-Catenin Protein but Absence of β-Catenin and APC Mutation in Gastrointestinal Carcinoid Tumor

  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Carcinoid tumors are a group of heterogeneous tumors with neuroendocrine differentiation and are mainly located in the gastrointestinal tract. A high frequency of cytoplasmic accumulation and/or nuclear translocation of β-catenin with frequent mutations of exon 3 of β-catenin gene in gastrointestinal carcinoid tumor has been previously described, but the role of Wnt/β-catenin/APC pathway in the genesis of carcinoid tumor remains largely unknown.

Methods

To further characterize the role of Wnt/β-catenin/APC pathway, we investigated 91 gastrointestinal carcinoid tumors and, for comparison, 26 extragastrointestinal carcinoid tumors by immunohistochemical detection of β-catenin protein and direct sequencing of exon 3 of the β-catenin gene and exon 15 of the APC gene.

Results

Cytoplasmic accumulation and/or nuclear translocation of β-catenin were found in 27 gastrointestinal carcinoid tumors (29.7%) but not in any extragastrointestinal carcinoid tumors. Interestingly, neither β-catenin nor APC gene mutation was detected in all of the cases with nuclear expression of β-catenin.

Conclusions

Our results indicate that the role β-catenin plays in the genesis of gastrointestinal and extragastrointestinal carcinoid tumors is different. Nuclear expression of β-catenin does not occur in extragastrointestinal carcinoid tumors, and mutation of exon 3 of β-catenin gene and exon 15 of APC gene does not contribute to the activation of Wnt/β-catenin/APC pathway in gastrointestinal carcinoid tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.

Similar content being viewed by others

References

  1. Bornstein-Quevdo L, Gamboa-Dominguez A. Carcinoid tumour of the duodenum and ampulla of Vater: a clinicomorphologic, immunohistochemical, and cell kinetic comparison. Hum Pathol 2001; 32:1252–6

    Article  Google Scholar 

  2. Hartel M, Wente MN, Sido B, Friess H, Buchler MW. Carcinoid of the ampulla of Vater. J Gastroenterol Hepatol 2005;20:676–81

    Article  PubMed  Google Scholar 

  3. Modlin IM, Kidd M, Latich I, Zikusoka MN, Shapiro MD. Current status of gastrointestinal carcinoids. Gastroenterology 2005; 128:1717–51

    Article  PubMed  Google Scholar 

  4. Soga J. Carcinoids and their variant endocrinomas: an analysis of 11842 reported cases. J Exp Clin Cancer Res 2003; 22:517–30

    PubMed  CAS  Google Scholar 

  5. Kulke MH, Mayer RJ. Carcinoid tumors. N Engl J Med 1999; 340:858–68

    Article  PubMed  CAS  Google Scholar 

  6. Modlin IM, Shapiro MD, Kidd M. An analysis of rare carcinoid tumors: clarifying these clinical conundrums. World J Surg 2005; 29:92–101

    Article  PubMed  Google Scholar 

  7. Williams ED, Sandler M. The classification of carcinoid tumors. Lancet 1963; 1:238–9

    Article  PubMed  CAS  Google Scholar 

  8. Solcia E, Kloppel G, Sobin LH. Histological typing of endocrine tumours. In: WHO International Histological Classification of Tumours. Berlin: Springer, 2000; pp 56–74

  9. Ozawa M, Baribault H, Kemler R. The cytoplasmic domain of the cell adhesion molecule uvomorulin associates with three independent proteins structurally related in different species. EMBO J 1989; 8:1711–7

    PubMed  CAS  Google Scholar 

  10. Bienz M. β-Catenin: a pivot between cell adhesion and Wnt signalling. Curr Biol 2005; 15:R64–7

    Article  PubMed  CAS  Google Scholar 

  11. Rubinfeld B, Souza B, Albert I, et al. Association of the APC gene product with β-catenin. Science 1993; 262:1731–4

    Article  PubMed  CAS  Google Scholar 

  12. Su LK, Vogelstein B, Kinzler KW. Association of the APC tumor suppressor protein with catenins. Science 1993; 262:1734–7

    Article  PubMed  CAS  Google Scholar 

  13. Rubinfeld B, Albert I, Porfiri E, Fiol C, Munemitsu S, Polakis P. Binding of GSK3beta to the APC–beta-catenin complex and regulation of complex assembly. Science 1996; 272:1023–6

    Article  PubMed  CAS  Google Scholar 

  14. Orford K, Crockett C, Jensen JP, Weissman AM, Byers SW. Serine phosphorylation–regulated ubiquitination and degradation of β-catenin. J Biol Chem 1997; 272:24735–8

    Article  PubMed  CAS  Google Scholar 

  15. Behrens J, von Kries JP, Kuhl M, et al. Functional interaction of beta-catenin with the transcription factor LEF-1. Nature 1996; 382:638–42

    Article  PubMed  CAS  Google Scholar 

  16. Huber O, Korn R, McLaughlin J, Ohsugi M, Herrmann BG, Kemler R. Nuclear localization of β-catenin by interaction with transcription factor LEF-1. Mech Dev 1996; 59:3–10

    Article  PubMed  CAS  Google Scholar 

  17. Funayama N, Fagotto F, McCrea P, Gumbiner BM. Embryonic axis induction by the armadillo repeat domain of β-catenin: evidence for intracellular signaling. J Cell Biol 1995; 128:959–68

    Article  PubMed  CAS  Google Scholar 

  18. Yost C, Torres M, Miller JR, Huang E, Kimelman D, Moon RT. The axis-inducing activity, stability, and subcellular distribution of beta-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3. Genes Dev 1996; 10:1443–54

    PubMed  CAS  Google Scholar 

  19. Behrens J, Lustig B. The Wnt connection to tumorigenesis. Int J Dev Biol 2004; 48:477–87

    Article  PubMed  CAS  Google Scholar 

  20. Morin PJ, Sparks AB, Korinek V, et al. Activation of β-catenin–Tcf signaling in colon cancer by mutations in β-catenin or APC. Science 1997; 275:1787–90

    Article  PubMed  CAS  Google Scholar 

  21. Moreno-Bueno G, Hardisson D, Sanchez C, et al. Abnormalities of the APC/β-catenin pathway in endometrial cancer. Oncogene 2002; 21:7981–90

    Article  PubMed  CAS  Google Scholar 

  22. Oliva E, Sarrio D, Brachtel EF, et al. High frequency of beta-catenin mutations in borderline endometrioid tumours of the ovary. J Pathol 2006; 208:708–13

    Article  PubMed  CAS  Google Scholar 

  23. Hsu HC, Jeng YM, Mao TL, Chu JS, Lai PL, Peng SY. β-Catenin mutations are associated with a subset of low-stage hepatocellular carcinoma negative for hepatitis B virus and with favorable prognosis. Am J Pathol 2000; 157:763–70

    PubMed  CAS  Google Scholar 

  24. Jeng YM, Wu MZ, Mao TL, Chang MH, Hsu HC. Somatic mutations of β-catenin play a crucial role in the tumorigenesis of sporadic hepatoblastoma. Cancer Lett 2000; 152:45–51

    Article  PubMed  CAS  Google Scholar 

  25. Tejpar S, Nollet F, Li C, et al. Predominance of beta-catenin mutations and beta-catenin dysregulation in sporadic aggressive fibromatosis (desmoid tumor). Oncogene 1999; 18:6615–20

    Article  PubMed  CAS  Google Scholar 

  26. Fujimori M, Ikeda S, Shimizu Y, Okajima M, Asahara T. Accumulation of β-catenin protein and mutations in exon 3 of β-catenin gene in gastrointestinal carcinoid tumor. Cancer Res 2001; 61:6656–9

    PubMed  CAS  Google Scholar 

  27. Cadigan KM, Liu YI. Wnt signaling: complexity at the surface. J Cell Sci 2006; 119:395–402

    Article  PubMed  CAS  Google Scholar 

  28. Ikeda S, Kishida S, Yamamoto H, Murai H, Koyama S, Kikuchi A. Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3beta and beta-catenin and promotes GSK-3beta–dependent phosphorylation of beta-catenin. EMBO J 1998; 17:1371–84

    Article  PubMed  CAS  Google Scholar 

  29. Ozaki S, Ikeda S, Ishizaki Y, et al. Alterations and correlations of the components in the Wnt signaling pathway and its target genes in breast cancer. Oncol Rep 2005; 14:1437–43

    PubMed  CAS  Google Scholar 

  30. Odajima T, Sasaki Y, Tanaka N, et al. Abnormal beta-catenin expression in oral cancer with no gene mutation: correlation with expression of cyclin D1 and epidermal growth factor receptor, Ki-67 labeling index, and clinicopathological features. Hum Pathol 2005; 36:234–41

    Article  PubMed  CAS  Google Scholar 

  31. Saldanha G, Ghura V, Potter L, Fletcher A. Nuclear beta-catenin in basal cell carcinoma correlates with increased proliferation. Br J Dermatol 2004; 151:157–64

    Article  PubMed  CAS  Google Scholar 

  32. Semba S, Kusumi R, Moriya T, Sasano H. Nuclear accumulation of β-catenin in human endocrine tumors: association with Ki-67 (MIB-1) proliferative activity. Endocrin Pathol 2000; 11:243–50

    Article  CAS  Google Scholar 

  33. Mao TL, Chu JS, Jeng YM, Lai PL, Hsu HC. Expression of mutant nuclear β-catenin correlates with non-invasive hepatocellular carcinoma, absence of portal vein spread, and good prognosis. J Pathol 2001; 193:95–101

    Article  PubMed  CAS  Google Scholar 

  34. Huang H, Fujii H, Sankila A, et al. Beta-catenin mutations are frequent in human hepatocellular carcinomas associated with hepatitis C virus infection. Am J Pathol 1999; 155:1795–801

    PubMed  CAS  Google Scholar 

  35. Pelosi G, Scarpa A, Puppa G, et al. Alteration of the E-cadherin/beta-catenin cell adhesion system is common in pulmonary neuroendocrine tumors and is an independent predictor of lymph node metastasis in atypical carcinoids. Cancer Lett 2005; 103:1154–64

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ray-Hwang Yuan MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, MC., Wang, CC., Chen, CC. et al. Nuclear Translocation of β-Catenin Protein but Absence of β-Catenin and APC Mutation in Gastrointestinal Carcinoid Tumor. Ann Surg Oncol 13, 1604–1609 (2006). https://doi.org/10.1245/s10434-006-9072-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-006-9072-2

Keywords

Navigation