Skip to main content

Advertisement

Log in

Integration of Global Spectral Karyotyping, CGH Arrays, and Expression Arrays Reveals Important Genes in the Pathogenesis of Glioblastoma Multiforme

  • Neuro-Oncology
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Glioblastoma multiforme (GBM) is the most common primary tumor of the central nervous system in adults. Patients with GBM have few treatment options, and their disease is invariably fatal. Molecularly targeted agents offer the potential to improve patient treatment; however, the use of these will require a fuller understanding of the genetic changes in this complex tumor.

Methods

We analyzed a series of 32 patients with GBM with array comparative genomic hybridization in combination with gene expression analysis. We focused on the recurrent breakpoints found by spectral karyotyping (SKY).

Results

By SKY we identified 23 recurrent breakpoints of the 202 translocations found in GBM cases. Gains and losses were identified in chromosomal regions close to the breakpoints by array comparative genomic hybridization. We evaluated the genes located in the regions involved in the breakpoints in depth. A list of 406 genes that showed a level of expression significantly different between patients and control subjects was selected to determine their effect on survival. Genes CACNA2D3, PPP2R2B, SIK, MAST3, PROM1, and PPP6C were significantly associated with shorter survival (median 200 days vs. 450 days, P ≤ 0.03).

Conclusions

We present a list of genes located in regions of breakpoints that could be grounds for future studies to determine whether they are crucial in the pathogenesis of this type of tumor, and we provide a list of six genes associated with the clinical outcome of patients with GBM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Luois DN, Ohgaki H, Wiestler OD, Cavenee WK, editors. World Health Organization classification of tumours of the central nervous system. 4th ed. Lyon: IARC/WHO, 2007.

    Google Scholar 

  2. Mitelman F, Johannson B, Mertenens F, editors. Mitelman database of chromosome aberrations and gene fusions in cancer. http://cgap.nci.nih.gov/Chromosomes/Mitelman.

  3. Koschny R, Koschny T, Froster UG, Krupp W, Zuber MA. Comparative genomic hybridization in glioma: a meta-analysis of 509 cases. Cancer Genet Cytogenet. 2002;135:147–59.

    Article  PubMed  CAS  Google Scholar 

  4. Krex D, Mohr B, Hauses M, Ehninger G, Schackert HK, Schackert G. Identification of uncommon chromosomal aberrations in the neuroglioma cell line H4 by spectral karyotyping. J Neurooncol. 2001;52:119–28.

    Article  PubMed  CAS  Google Scholar 

  5. Krex D, Mohr B, Appelt H, Schackert HK, Schackert G. Gene analysis of a multifocal glioblastoma multiforme: a suitable tool to gain new aspects in glioma development. Neurosurgery. 2003;53:1377–84.

    Article  PubMed  Google Scholar 

  6. Kubota H, Nishizaki T, Harada K, et al. Identification of recurrent chromosomal rearrangements and the unique relationship between low-level amplification and translocation in glioblastoma. Genes Chromosomes Cancer. 2001;31:125–33.

    Article  PubMed  CAS  Google Scholar 

  7. Squire JA, Arab S, Marrano P, et al. Molecular cytogenetic analysis of glial tumors using spectral karyotyping and comparative genomic hybridization. Mol Diagn. 2001;6:93–108.

    Article  PubMed  CAS  Google Scholar 

  8. Cowell JK, Matsui S, Wang YD, et al. Application of bacterial artificial chromosome array-based comparative genomic hybridization and spectral karyotyping to the analysis of glioblastoma multiforme. Cancer Genet Cytogenet. 2004;151:36–51.

    Article  PubMed  CAS  Google Scholar 

  9. Loja T, Chlapek P, Kuglik P, et al. Characterization of a GM7 glioblastoma cell line showing CD133 positivity and both cytoplasmic and nuclear localization of nestin. Oncol Rep. 2009;21:119–27.

    PubMed  CAS  Google Scholar 

  10. Zuber MA, Krupp W, Holland H, Froster UG. Characterization of chromosomal aberrations in a case of glioblastoma multiforme combining cytogenetic and molecular cytogenetic techniques. Cancer Genet Cytogenet. 2002;138:111–15.

    Article  PubMed  CAS  Google Scholar 

  11. Nord H, Hartmann C, Andersson R, et al. Characterization of novel and complex genomic aberrations in glioblastoma using a 32 K BAC array. Neurooncology. 2009;11:803–18.

    CAS  Google Scholar 

  12. Yin D, Ogawa S, Kawamata N, et al. High-resolution genomic copy number profiling of glioblastoma multiforme by single nucleotide polymorphism DNA microarray. Mol Cancer Res. 2009;7:665–77.

    Article  PubMed  CAS  Google Scholar 

  13. Rao SK, Edwards J, Joshi AD, Siu IM, Riggins GJ. A survey of glioblastoma genomic amplifications and deletions. J Neurooncol. 2010;96:169–79.

    Article  PubMed  CAS  Google Scholar 

  14. Idbaih A, Criniere E, Ligon KL, Delattre O, Delattre JY. Array-based genomics in glioma research. Brain Pathol. 2010;20:28–38.

    Article  PubMed  CAS  Google Scholar 

  15. Misra A, Pellarin M, Nigro J, et al. Array comparative genomic hybridization identifies genetic subgroups in grade 4 human astrocytoma. Clin Cancer Res. 2005;11:2907–18.

    Article  PubMed  CAS  Google Scholar 

  16. Nigro JM, Misra A, Zhang L, et al. Integrated array-comparative genomic hybridization and expression array profiles identify clinically relevant molecular subtypes of glioblastoma. Cancer Res. 2005;65:1678–86.

    Article  PubMed  CAS  Google Scholar 

  17. Korshunov A, Sycheva R, Golanov A. Genetically distinct and clinically relevant subtypes of glioblastoma defined by array-based comparative genomic hybridization (array-CGH). Acta Neuropathol. 2006;111:465–74.

    Article  PubMed  CAS  Google Scholar 

  18. Maher EA, Brennan C, Wen PY, et al. Marked genomic differences characterize primary and secondary glioblastoma subtypes and identify two distinct molecular and clinical secondary glioblastoma entities. Cancer Res. 2006;66:11502–13.

    Article  PubMed  CAS  Google Scholar 

  19. Idbaih A, Marie Y, Lucchesi C, et al. BAC array CGH distingishes mutually exclusive alterations that define clinicogenetic subtypes of gliomas. Int J Cancer. 2008;122:1778–86.

    Article  PubMed  CAS  Google Scholar 

  20. Mulholland PJ, Fiegler H, Mazzanti C, et al. Genomic profiling identifies discrete deletions associated with translocations in glioblastoma multiforme. Cell Cycle. 2006;5:783–91.

    Article  PubMed  CAS  Google Scholar 

  21. Ruano Y, Mollejo M, Ribalta T, et al. Identification of novel candidate target genes in amplicons of glioblastoma multiforme tumors detected by expression and CGH microarray profiling. Mol Cancer. 2006;26:39.

    Article  Google Scholar 

  22. de Tayrac M, Etcheverry A, Aubry M, et al. Integrative genome-wide analysis reveals a robust genomic glioblastoma signature associated with copy number driving changes in gene expression. Genes Chromosomes Cancer. 2009;48:55–68.

    Article  PubMed  Google Scholar 

  23. Hodgson JG, Yeh RF, Ray A, et al. Comparative analyses of gene copy number and mRNA expression in glioblastoma multiforme tumors and xenografts. Neurooncology. 2009;11:477–87.

    CAS  Google Scholar 

  24. Ernst A, Hofmann S, Ahmadi R, et al. Genomic and expression profiling of glioblastoma stem cell-like spheroid cultures identifies novel tumor-relevant genes associated with survival. Clin Cancer Res. 2009;15:6541–50.

    Article  PubMed  CAS  Google Scholar 

  25. Lo KC, Rossi MR, LaDuca J, et al. Candidate glioblastoma development gene identification using concordance between copy number abnormalities and gene expression level changes. Genes Chromosomes Cancer. 2007;46:875–94.

    Article  PubMed  CAS  Google Scholar 

  26. Wiedemeyer R, Brennan C, Heffernan TP, et al. Feedback circuit among INK4 tumor suppressors constrains human glioblastoma development. Cancer Cell. 2008, 13:355–64.

    Article  PubMed  CAS  Google Scholar 

  27. Gardina PJ, Lo KC, Lee W, Cowell JK, Turpaz Y. Ploidy status and copy number aberrations in primary glioblastomas defined by integrated analysis of allelic ratios, signal ratios and loss of heterozygosity using 500 K SNP mapping arrays. BMC Genomics. 2008;17:489.

    Article  Google Scholar 

  28. TCGA: The Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455:1061–68.

    Article  Google Scholar 

  29. Ducray F, Idbaih A, de Reyniès A, et al. Anaplastic oligodendrogliomas with 1p19q codeletion have a proneural gene expression profile. Mol Cancer. 2008;20:41.

    Article  Google Scholar 

  30. Verhaak RG, Hoadley KA, Purdom E, et al. Cancer Genome Atlas Research Network. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17:98–110.

    Article  PubMed  CAS  Google Scholar 

  31. Kleihues P, Burger PC, Scheithauer BW. The new WHO classification of brain tumours. Brain Pathol. 1993;3:255–68.

    Article  PubMed  CAS  Google Scholar 

  32. Qi H, Dal Cin P, Hernandez JM, et al. Trisomies 8 and 20 in desmoid tumors. Cancer Genet Cytogenet. 1996;92:147–9.

    Article  PubMed  CAS  Google Scholar 

  33. Robledo C, García JL, Caballero D, et al; Spanish Lymphoma/Autologous Bone Marrow Transplant Study Group (GEL-TAMO). Array comparative genomic hybridization identifies genetic regions associated with outcome in aggressive diffuse large B-cell lymphomas. Cancer. 2009;115:3728–37.

    Article  PubMed  CAS  Google Scholar 

  34. Hermsen M, Snijders A, Alonso Guervós M, et al. Centromeric chromosomal translocations show tissue-specific differences between squamous cell carcinomas and adenocarcinomas. Oncogene. 2005;24:1571–9.

    Article  PubMed  CAS  Google Scholar 

  35. Qin YR, Fu L, Sham PC, et al. Single-nucleotide polymorphism–mass array reveals commonly deleted regions at 3p22 and 3p14.2 associate with poor clinical outcome in esophageal squamous cell carcinoma. Int J Cancer. 2008;123:826–30.

    Article  PubMed  CAS  Google Scholar 

  36. Tai AL, Mak W, Ng PK, et al. High-throughput loss-of-heterozygosity study of chromosome 3p in lung cancer using single-nucleotide polymorphism markers. Cancer Res. 2006;66:4133–8.

    Article  PubMed  CAS  Google Scholar 

  37. Hanke S, Bugert P, Chudek J, Kovacs G. Cloning a calcium channel α2δ-3 subunit gene from a putative tumor suppressor gene region at chromosome 3p21.1 in conventional renal cell carcinoma. Gene. 2001;264:69–75.

    Article  PubMed  CAS  Google Scholar 

  38. Wanajo A, Sasaki A, Nagasaki H, et al. Methylation of the calcium channel–related gene, CACNA2D3, is frequent and a poor prognostic factor in gastric cancer. Gastroenterology. 2008;135:580–90.

    Article  PubMed  CAS  Google Scholar 

  39. Thorell K, Bergman A, Carén H, et al. Verification of genes differentially expressed in neuroblastoma tumours: a study of potential tumour suppressor genes. BMC Med Genomics. 2009;2:53.

    Article  PubMed  Google Scholar 

  40. Johannsdottir HK, Jonsson G, Johannesdottir G, et al. Chromosome 5 imbalance mapping in breast tumors from BRCA1 and BRCA2 mutation carriers and sporadic breast tumors. Int J Cancer. 2006;119:1052–60.

    Article  PubMed  CAS  Google Scholar 

  41. Hashimoto YK, Satoh T, Okamoto M, Takemori H. Importance of autophosphorylation at Ser186 in the A-loop of salt inducible kinase 1 for its sustained kinase activity. J Cell Biochem. 2008;104:1724–39.

    Article  PubMed  CAS  Google Scholar 

  42. Garland P, Quraishe S, French P, O’Connor V. Expression of the MAST family of serine/threonine kinases. Brain Res. 2008;1195:12–9.

    Article  PubMed  CAS  Google Scholar 

  43. Bastians H, Ponstingl H. The novel human protein serine/threonine phosphatase 6 is a functional homologue of budding yeast Sit4p and fission yeast ppe1, which are involved in cell cycle regulation. J Cell Sci. 1996;109:2865–74.

    PubMed  CAS  Google Scholar 

  44. Bhatia M. AC133 expression in human stem cells. Leukemia. 2001;15:1685–8.

    Article  PubMed  CAS  Google Scholar 

  45. Looijenga LH, Hersmus R, Gillis AJ, et al. Genomic and expression profiling of human spermatocytic seminomas: primary spermatocyte as tumorigenic precursor and DMRT1 as candidate chromosome 9 gene. Cancer Res. 2006;66:290–302.

    Article  PubMed  CAS  Google Scholar 

  46. Gashaw I, Dushaj O, Behr R, et al. Novel germ cell markers characterize testicular seminoma and fetal testis. Mol Hum Reprod. 2007;13:721–7.

    Article  PubMed  CAS  Google Scholar 

  47. Hermann PC, Huber SL, Herrler T, et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell. 2007;1:313–23.

    Article  PubMed  CAS  Google Scholar 

  48. Yin S, Li J, Hu C, et al. CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity. Int J Cancer. 2007;120:1444–50.

    Article  PubMed  CAS  Google Scholar 

  49. O’Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 2007;445:106–10.

    Article  PubMed  Google Scholar 

  50. Ricci-Vitiani L, Lombardi DG, Pilozzi E, et al. Identification and expansion of human colon-cancer-initiating cells. Nature. 2007;445:111–5.

    Article  PubMed  CAS  Google Scholar 

  51. Ieta K, Tanaka F, Haraguchi N, et al. Biological and genetic characteristics of tumor-initiating cells in colon cancer. Ann Surg Oncol. 2008;15:638–48.

    Article  PubMed  Google Scholar 

  52. Eramo A, Lotti F, Sette G, et al. Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ. 2008;15:504–14.

    Article  PubMed  CAS  Google Scholar 

  53. Hemmati HD, Nakano I, Lazareff JA, et al. Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci USA. 2003;100:15178–83.

    Article  PubMed  CAS  Google Scholar 

  54. Singh SK, Clarke ID, Terasaki M, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003;63:5821–8.

    PubMed  CAS  Google Scholar 

  55. Singh SK, Hawkins C, Clarke ID, et al. Identification of human brain tumour initiating cells. Nature. 2004;432:396–401.

    Article  PubMed  CAS  Google Scholar 

  56. Yuan X, Curtin J, Xiong Y, et al. Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene. 2004;23:9392–400.

    Article  PubMed  CAS  Google Scholar 

  57. Nishide K, Nakatani Y, Kiyonari H, Kondo T. Glioblastoma formation from cell population depleted of Prominin1-expressing cells. PLoS ONE. 2009;4:e6869.

    Article  PubMed  Google Scholar 

  58. Garcia JL, Perez-Caro M, Gomez-Moreta JA, et al. Molecular analysis of ex-vivo CD133+ GBM cells revealed a common invasive and angiogenic profile but different proliferative signatures among high grade gliomas. BMC Cancer. 2010;10:454.

    Article  PubMed  Google Scholar 

  59. Pallini R, Ricci-Vitiani L, Banna GL, et al. Cancer stem cell analysis and clinical outcome in patients with glioblastoma multiforme. Clin Cancer Res. 2008;14:8205–12.

    Article  PubMed  CAS  Google Scholar 

  60. Zhang M, Song T, Yang L, et al. Nestin and CD133: valuable stem cell-specific markers for determining clinical outcome of glioma patients. J Exp Clin Cancer Res. 2008;27:85.

    Article  PubMed  CAS  Google Scholar 

  61. Kappadakunnel M, Eskin A, Dong J, et al. Stem cell associated gene expression in glioblastoma multiforme: relationship to survival and the subventricular zone. J Neurooncol. 2010;96:359–67.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank Maria Angeles Hernandez for technical assistance. Research grants and financial support included the following: research in P.E.L.’s laboratory is supported by the ISCIII-CSJA (EMER07/054); and research in J.L.G.’s laboratory is supported by the ISCIII-CSJCyL (EMER07/038).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Paola E. Leone PhD or Juan L. García PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leone, P.E., González, M.B., Elosua, C. et al. Integration of Global Spectral Karyotyping, CGH Arrays, and Expression Arrays Reveals Important Genes in the Pathogenesis of Glioblastoma Multiforme. Ann Surg Oncol 19, 2367–2379 (2012). https://doi.org/10.1245/s10434-011-2202-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-011-2202-5

Keywords

Navigation