Skip to main content
Log in

Portal Vein Segmentation of a 3D-Planning System for Liver Surgery—In vivo Evaluation in a Porcine Model

  • Hepatic and Pancreatic Tumors
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Computer systems allow the planning of complex liver operations. The segmentation of intrahepatic vessels builds the basis for the calculation of liver segments and resection proposals. For surgical use, it is essential to know the capabilities and limitations of the segmentation. The aim of this study was to determine the sensitivity and precision of the portal vein segmentation of a computer planning system for liver surgery in vivo.

Methods

Segmentations were performed with the software system HepaVision on computed tomography (CT) scan data of domestic pigs. An in situ corrosion cast of the portal vein served as the gold standard. The segmentation results of the portal vein and the corrosion cast were compared with regard to sensitivity, precision, and amount of short-circuit segmentations.

Results

The methodology demonstrated high resolution ex situ. The in vivo sensitivity of the portal vein segmentation was 100% for vessels of more than 5 mm in diameter and 82% for vessels of 3–4 mm. All segment branches were detected as well as 84% of the first subsegment branches with a diameter of more than 3 mm. The precision of the system was 100% for segment branches and 89% for the first subsegment vessels. The amount of internal short-circuit segmentations was less than 3.0%. No external short-circuits were found.

Conclusion

The system has a high precision and sensitivity under clinical conditions. The segmentation is suitable for portal vein branches of the first and second order and for vessels of ≥3 mm in diameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Couinaud C Le Foie: Etudes anatomiques et chirurgicales. Paris: Masson; 1957

    Google Scholar 

  2. Fasel JHD, Selle D, Evertsz CJG, et al. Segmental anatomy of the liver: Poor correlation with CT. Radiology 1998; 206:151–6

    PubMed  CAS  Google Scholar 

  3. van Leeuwen MS, Fernandez MA, van Es HW, et al. Variations in venous and segmental anatomy of the liver: two- and three-dimensional MR imaging in healthy volunteers. AJR Am J Roentgenol 1994; 162:1337–45

    PubMed  Google Scholar 

  4. Fischer L, Cardenas C, Thorn M, et al. Limits of Couinaud’s liver segment classification: a quantitative computer-based three-dimensional analysis. J Comput Assist Tomogr 2002; 26:962–7

    Article  PubMed  Google Scholar 

  5. Fischer L, Thorn M, Neumann JO, et al. The segments of the hepatic veins-is there a spatial correlation to the Couinaud liver segments? Eur J Radiol 2005; 53:245–55

    Article  PubMed  Google Scholar 

  6. Harms J, Bourquain H, Bartels M, et al. Surgical impact of computerized 3D CT-based visualizations in living donor liver transplantation. Surg Technol Int 2004; 13:191–5

    PubMed  Google Scholar 

  7. Hwang S, Lee SG, Choi ST, et al. Hepatic vein anatomy of the medial segment for living donor liver transplantation using extended right lobe graft. Liver Transpl 2005; 11:449–55

    Article  PubMed  Google Scholar 

  8. Lamade W, Glombitza G, Fischer L, et al. The impact of 3-dimensional reconstructions on operation planning in liver surgery. Arch Surg 2000; 135:1256–61

    Article  PubMed  CAS  Google Scholar 

  9. Satou S, Sugawara Y, Matsui Y, et al. Preoperative estimation of right lateral sector graft by three-dimensional computed tomography. Transplant Proc 2006; 38:1400–3

    Article  PubMed  CAS  Google Scholar 

  10. Taniguchi M, Furukawa H, Shimamura T, et al. Hepatic venous reconstruction of anterior sector using three-dimensional helical computed tomography in living donor liver transplantation. Transplantation 2006; 81:797–9

    Article  PubMed  Google Scholar 

  11. Frericks BB, Caldarone FC, Nashan B, et al. 3D CT modeling of hepatic vessel architecture and volume calculation in living donated liver transplantation. Eur Radiol 2004; 14:326–33

    Article  PubMed  Google Scholar 

  12. Frericks BB, Kirchhoff TD, Shin HO, et al. Preoperative volume calculation of the hepatic venous draining areas with multi-detector row CT in adult living donor liver transplantation: Impact on surgical procedure. Eur Radiol 2006; 16:2803–10

    Article  PubMed  Google Scholar 

  13. Hasegawa K, Kokudo N, Imamura H, et al. Prognostic impact of anatomic resection for hepatocellular carcinoma. Ann Surg 2005; 242:252–9

    Article  PubMed  Google Scholar 

  14. Wakai T, Shirai Y, Sakata J, et al. Anatomic resection independently improves long-term survival in patients with t1–t2 hepatocellular carcinoma. Ann Surg Oncol 2007; 14:1356–65

    Article  PubMed  Google Scholar 

  15. Kamiyama T, Nakagawa T, Nakanishi K, et al. Preoperative evaluation of hepatic vasculature by three-dimensional computed tomography in patients undergoing hepatectomy. World J Surg 2006; 30:400–9

    Article  PubMed  Google Scholar 

  16. Lang H, Radtke A, Hindennach M, et al. Impact of virtual tumor resection and computer-assisted risk analysis on operation planning and intraoperative strategy in major hepatic resection. Arch Surg 2005; 140:629–38

    Article  PubMed  Google Scholar 

  17. Florman S, Miller CM. Live donor liver transplantation. Liver Transpl 2006; 12:499–510

    Article  PubMed  Google Scholar 

  18. Pomposelli JJ, Verbesey J, Simpson MA, et al. Improved survival after live donor adult liver transplantation (LDALT) using right lobe grafts: program experience and lessons learned. Am J Transplant 2006; 6:589–98

    Article  PubMed  CAS  Google Scholar 

  19. Asakuma M, Fujimoto Y, Bourquain H, et al. Graft selection algorithm based on congestion volume for adult living donor liver transplantation. Am J Transplant 2007; 7:1788–96

    Article  PubMed  CAS  Google Scholar 

  20. Albrecht D, Germer CT, Isbert C, et al. Interstitial laser coagulation: evaluation of the effect of normal liver blood perfusion and the application mode on lesion size. Lasers Surg Med 1998; 23:40–47

    Article  PubMed  CAS  Google Scholar 

  21. Frericks BB, Ritz JP, Roggan A, et al. Multipolar radiofrequency ablation of hepatic tumors: initial experience. Radiology 2005; 237:1056–62

    Article  PubMed  Google Scholar 

  22. Isbert C, Roggan A, Ritz JP, et al. Laser-induced thermotherapy: intra- and extralesionary recurrence after incomplete destruction of experimental liver metastasis. Surg Endosc 2001; 15:1320–6

    Article  PubMed  CAS  Google Scholar 

  23. Ritz JP, Isbert C, Roggan A, et al. Laser-induced thermotherapy of liver metastases. Front Radiat Ther Oncol 2004; 38:106–121

    Article  PubMed  Google Scholar 

  24. Buhr HJ, Roher HD, Horeyseck W, et al. [Arterial blood supply of the stomach in esophago-gastroplasty with cervical anastomosis]. Chirurg 1980; 51:511–5

    PubMed  CAS  Google Scholar 

  25. Lang H, Radtke A, Liu C, et al. Extended left hepatectomy - modified operation planning based on three-dimensional visualization of liver anatomy. Langenbecks Arch Surg 2004; 389:306–10

    Article  PubMed  Google Scholar 

  26. Radtke A, Nadalin S, Sotiropoulos GC, et al. Computer-assisted operative planning in adult living donor liver transplantation: a new way to resolve the dilemma of the middle hepatic vein. World J Surg 2007; 31:175–85

    Article  PubMed  CAS  Google Scholar 

  27. Wald C, Bourquain H. Role of new three-dimensional image analysis techniques in planning of live donor liver transplantation, liver resection, and intervention. J Gastrointest Surg 2006; 10:161–5

    Article  PubMed  Google Scholar 

  28. Hogemann D, Stamm G, Shin H, et al. Individual planning of liver surgery using a virtual model of the liver and associated structures. Radiologe 2000; 40:267–73

    Article  PubMed  CAS  Google Scholar 

  29. Oldhafer KJ, Hogemann D, Stamm G, et al. Three-dimensional (3D) visualization of the liver for planning extensive liver resections. Chirurg 1999; 70:233–8

    Article  PubMed  CAS  Google Scholar 

  30. Peitgen HO, Bourquain H, Broelsch CE, et al. New methods for computer aided preoperative determination of donor risks in living donor liver transplantation. Liver Transplantation 2004; 10:C22

    Google Scholar 

  31. Schenk A, Prause G, Peitgen HO. Local-cost computation for efficient segmentation of 3D objects with live wire. Proc SPIE Med Image Process 2001; 4322:1357–64

    Article  Google Scholar 

  32. Preim B, Selle D, Spindler W, et al. Interaction techniques and vessel analysis for preoperative planning in liver surgery. Med Imag Comput Comput-Assist Interv MICCAI 2000; 1935:608–17

    Google Scholar 

  33. Selle D, Preim B, Schenk A, et al. Analysis of vasculature for liver surgical planning. IEEE Trans Med Imag 2002; 21:1344–57

    Article  Google Scholar 

  34. Welp C, Siebers S, Ermert H, et al. Investigation of the influence of blood flow rate on large vessel cooling in hepatic radiofrequency ablation. Biomed Tech (Berl) 2006; 51:337–46

    Article  Google Scholar 

  35. Lu DS, Raman SS, Limanond P, et al. Influence of large peritumoral vessels on outcome of radiofrequency ablation of liver tumors. J Vasc Interv Radiol 2003; 14:1267–74

    PubMed  Google Scholar 

  36. Altrogge I, Kroger T, Preusser T, et al. Towards optimization of probe placement for radio-frequency ablation. Med Image Comput Comput Assist Interv Int Conf Med Image Comput Comput Assist Interv 2006; 9:486–93

    PubMed  Google Scholar 

  37. Kroger T, Altrogge I, Preusser T, et al. Numerical simulation of radio frequency ablation with state dependent material parameters in three space dimensions. Med Image Comput Comput Assist Interv Int Conf 2006; 9:380–8

    Google Scholar 

  38. Court FG, Wemyss-Holden SA, Morrison CP, et al. Segmental nature of the porcine liver and its potential as a model for experimental partial hepatectomy. Br J Surg 2003; 90:440–4

    Article  PubMed  CAS  Google Scholar 

  39. Ooijen PM, Wolf R, Schenk A, et al. Recent developments in organ-selective reconstruction and analysis of multiphase liver ct. Imag Decis 2003; 7:37–43

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant of the Deutsche Forschungsgemeinschaft (German Research Foundation), Ref.-Nos. GE 932/2-1 and PE 199/15-1. The authors thank Marcia L. Schwartz for help in the data interpretation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai S. Lehmann MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lehmann, K.S., Ritz, JP., Valdeig, S. et al. Portal Vein Segmentation of a 3D-Planning System for Liver Surgery—In vivo Evaluation in a Porcine Model. Ann Surg Oncol 15, 1899–1907 (2008). https://doi.org/10.1245/s10434-008-9934-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-008-9934-x

Keywords

Navigation